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Abstract

A probabilistic approach to systems of partial differential equations is developed on the basis of the well-known
Feynman—Kac and Bismut formulas providing explicit probabilistic representations of the solutions and of their de-
rivatives of scalar differential equations. Some numerical examples are also included. In particular the Lamé equations
of elastostatics are solved and the results are compared with some known exact analytic solutions to demonstrate the
efficiency of the approach.
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1. Introduction

It is attractive to have solutions of applied mathematical problems in forms that permit the computations
of interest at isolated points without computing the functions on massive meshes. For many problems
described by partial differential equations such solutions are delivered by the so-called Feynman-Kac
formulas (Dynkin, 1965; Freidlin, 1985; Simon, 1979) involving mathematical expectations of specified
functionals on random walks associated with the equations under consideration. These formulas and their
numerous variations may be considered from many different points of view, some of which are discussed in
(Simon, 1979). Since all of the approaches somehow involve the averaging over trajectories of random
walks, it is appropriate to use the term ‘random walk method’ for any method of analysis in which the
formulas require averaging over random motions.

Random walk methods have been used since the 1920s (Courant et al., 1928; Khinchin, 1933; Petrovsky,
1934; Wiener, 1923) for the analysis of scalar parabolic and elliptic positive-definite partial differential
equations describing, respectively, diffusion processes and equilibrium states. The advantages of these
methods include versatility, unrestrictive requirements on the problem’s data, the possibility of computing
functions of interest at isolated points, and the possibility of implementations employing simple scalable
algorithms with virtually unlimited capability for parallel processing. Nevertheless, the practical impact of
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random walk methods has been limited, partially because these methods have not been extended to problems
of wave propagation or to problems described by systems of coupled partial differential equations, such as
the Lamé equations of the theory of elasticity or the Maxwell equations of electrodynamics. However, in
recent years there has been increased activity in the further development of probabilistic methods of analysis
of physical problems. Thus, in (Busnello, 1999) the random walk method is applied to the analysis of the
Navier—Stokes equations of hydrodynamics, and in (Chati et al., 2001; Grigoriu, 2000; Shia and Hui, 2000)
random walks are applied to certain restricted problems of elasticity. Quite recently attempts have also been
made to apply similar methods to steady flow computations (Hunt et al., 1995) as well as to acoustics and
electromagnetics (Galdi et al., 2000, 2001, September—October; Nevels et al., 2000; Schlottmann, 1999), and
these methods are increasingly used for analysis of geophysical wave propagation such as in (Bal et al., 1999,
2000), where the competitiveness of random walk methods in wave propagation is discussed.

Following this trend we recently launched a program aimed at developing simple, but theoretically exact,
random walk solutions of problems of elastic wave propagation. In the first stage, the solutions of the scalar
Helmholtz equation in the entire space and in simple exterior domains were represented in the probabilistic
form (Budaev and Bogy, 2001, 2002a,b) which was numerically tested on elementary examples admitting
simple analytic solutions for comparison. Later, in (Budaev and Bogy, 2002a,b,c), it was shown that the
random walk method makes it possible to describe such phenomena of wave propagation as backscattering,
which is predicted neither by the ray method nor by a more general method of parabolic equations (Fock
and Leontovich, 1946; Fock, 1965). Most recently in (Budaev and Bogy, 2003a,b,c) we applied the method
to the analysis of wave propagation in canonical domains: waves in wedges and cones are considered in
(Budaev and Bogy, 2003b); waves in exterior cylindrical and spherical domains are discussed in (Budaev
and Bogy, 2003c¢); and in (Budaev and Bogy, 2003a) the important problem of diffraction by a plane wedge-
shaped screen is solved by the method from (Budaev and Bogy, 2003a,b,c).

Here we present an extension of the random walk method to a class of systems of linear second-order
partial differential equations that includes the Lamé equations of the theory of elasticity. For the sake of a
transparent presentation of the basic ideas this paper is restricted to the discussion of the Lamé equations in
the entire isotropic homogeneous space, or, more generally, to the discussion of systems of coupled dif-
ferential equations with constant coefficients in the entire space. Certainly, the analysis of such equations
from another, even non-conventional, point of view may not create new knowledge about the problems
whose closed-form analytic solutions are easily available. We fully appreciate this point, but note that
without demonstrating the success on elementary models it is hard to justify further efforts in the devel-
opment of a new method. In future papers we plan to consider equations of elastostatics in bounded, not
necessarily homogeneous, domains with various boundary conditions, and to address dynamic problems of
propagation and scattering of elastic waves.

In this paper we start from a brief and elementary discussion of the Feynman-Kac formulas, which
represent solutions of scalar partial differential equations, and of the Bismut formulas representing de-
rivatives of those solutions. Although these results are rather standard, they are included here to make the
present developments more accessible to a broader audience, which includes specialists working with ap-
plications who may not be familiar with advanced stochastic calculus. Then, combining in a certain order
the results for scalar equations we obtain the probabilistic solutions of systems of second-order differential
equations.

2. Feynman—Kac formulas
The probabilistic approach to partial differential equations has been known since the 1920s but it became

widely known several years later, after the papers of Feynman (1942, 1948) and Kac (1949, 1951) where the
solutions of the Schrodinger and the diffusion equations were represented in the form which is now usually
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referred to as the Feynman—Kac formulas. Since then, Feynman-Kac formulas have been derived using
several distinctively different methods as discussed, for example, in (Simon, 1979). One such method is
outlined here in order to make the paper self-contained and to simplify the following discussion of the less
known material presented in Section 3.

Consider the initial value problem

2
at 22}ﬁ22+Avw+B¢ $(x,0) = F(x), (2.1)

whose coefficients 42, 4 and B are smooth functions of the spatial variable x € R".
If the coefficients A; and B are constants, and A; # 0, then the solution ¢(x,?) of the problem (2.1) is
given by either of the two following integrals:

=t [ 0T 2
X,t) =¢ y)ay .
RN (Zﬁf)N/zAllAzz e ANN
s efwz/Zt .
:e’/ ——F(x +t4A + Aw)dw, 2.3
ol ) (23)

where A is the diagonal matrix
A= diag[All,A227...,ANN], (24)

generated by the coefficients of (2.1). If the coefficients of (2.1) are not constants, then the integrals (2.2) and
(2.3) do not solve (2.1), but, nevertheless, they can be used to construct an explicit probabilistic solution of
(2.1).

To solve (2.1) with non-constant coefficients we observe that the evolution equation (2.1) generates a
family of time translation operators

T, px, ty) — dlx, b + 1), (2.5)

transferring the solution of (2.1) at the instant ¢, to the solution at the instants #, + ¢. Then the solution
¢(x,t) of (2.1) can be represented as a composition

) =3T,-T,-- T, Fx), e=-—, 2.6

Pt =T T TFE), o= 26)
n-times

of consecutive time transitions on a time interval ¢. If ¢ < 1 then the operators T, can be approximated by

the integrals (2.2) or (2.3) with the kernel corresponding to the matrix A from (2.4) frozen at the point x.

Then, passing to the limit # — 0 we arrive at the solution of (2.1) in the form

D 0) = lim g, (xv,0), ne=1, (27)
with the approximation ¢,(x,¢) determined by either of the formulas
—[A7 () (y—x—ed (x ] /2¢
bxn) = [ B0t — ) dy (23)
rY (272)" [0 (x)02(x) - - - oy (%))
- /2 .
:gm/__ﬁm@@+M@+A@ﬁpwmﬁ (2.9)
rY (27t)

which should be applied recursively exactly » times, until we arrive at the integral with the pre-defined
function ¢,(y,0) = F(y) in the right-hand side.
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The evaluation of (2.9) is based on the Monte-Carlo quadrature formula

—w?/2D
/R 19— i = (4} (2.10)

where E denotes the mathematical expectation computed over the random vector Aw € R" normally dis-
tributed with the dispersion D. Then, applying (2.10) to (2.9) we express ¢,(x,?) as the mathematical ex-
pectation

.(x,1) = E{qﬁg (x +ed(x) + A(x) AW, 1 — s) e } (2.11)

with the averaging over the random vectors Aw € R" normally distributed with the standard deviation
D = &. Recursively applying this formula » times we arrive at the representation

¢,(x, 1) = E{F(in)es[B(cfoHB(il)+--~+B(6H)]}’ ne = t, (2.12)
where the mathematical expectation is computed over the n-legged discrete trajectories

x=& o o= Gy G =&+ ed(E) + AE) A, (2.13)
determined by the independent random vectors Aw,, Aw,, ..., Aw,, distributed according to the normal law

with the standard deviation D = ¢. Finally, passing in (2.12) to the limit ¢ — 0 we obtain the well-known
Feynman—Kac formula (Dynkin, 1965; Freidlin, 1985)

o, 1) = E{F(fi)efo' ‘*“”“}7 (2.14)

where the averaging is extended over the trajectories of the continuous random motion & governed by Ito’s
stochastic equation

A& = A(&)di + A(E)di, & =x, (2.15)

with w, denoting the standard N-dimensional Brownian motion (Wiener process).

It should be emphasized that the Feynman—Kac formula (2.14) that provides the solution of the Cauchy
problem (2.1) in the entire space R" is so versatile that it can be used in several different ways to derive
probabilistic solutions of problems like (2.1) formulated in a domain G with conditions imposed on its
boundary 0G. Thus, the Dirichlet problem on the domain G C R" consisting of the equation and the initial
condition from (2.1), and the boundary condition

d(x, 1)), =0, (2.16)
can be treated as a problem (2.1) in the entire space R" with the coefficient B(x) extended outside of G as
B(x) = —o00, x¢G, (2.17)

and with the coefficients A (x), A(x) extended outside G as arbitrary bounded functions. Then, applying
(2.14) and taking into account (2.17) we can readily show that the solution of the problem (2.1) and (2.16)
is given by the mathematical expectation

o o [ B(E)ds . 1, ifr<r,

o0 = Bfute - or@eh ), ye—n = {0 ST (2.18)
where 7 is the exit time, defined as the instant when the trajectory & touches the boundary 9G for the first
time.

Another approach to the probabilistic solution of the Dirichlet problem (2.1) and (2.16) is to extend the
coefficients and the initial data of the problem (2.1) outside of G by the formulas
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Ay(x) =A(x) =F(x) =0, B(x)=-1 forx¢G. (2.19)

Then, applying (2.14) and taking into account (2.19) we again arrive at (2.18).

Finally, to demonstrate the versatility of the random walks approach we outline one more method
leading to explicit probabilistic solutions of the Dirichlet problem (2.1) and (2.16) in a form distinctively
different from (2.18).

Let us restrict ourselves, for simplicity, to the heat-conduction problem

o 1

i §V2¢ +Bd, ¢x,0)=F(x), ¢ 0)]eo6=0, B <0, (2.20)
which is a particular but representative case of (2.1) and (2.16), and seek its solution in the product form
D(x,1) = gx)(x, 1), (2.21)

where Y(x, ) is a new unknown function and g(x) is an auxiliary smooth function on G satisfying the
conditions

gx) =0, 0 < |ii(x)-Veg(x)|| <const forx € G, (2.22)

g(x) >0, Vg(x) <0 forxecgG, (2.23)

where 7(x) is the unit vector normal to 0G at the point x and oriented inward to G. Such a function always
exists and can usually be defined by simple elementary formulas, utilizing specifics of the domain G. For
example, if G is the ball ||x|| < 1, then g(x) can be defined as g(x) = 1 — ||x||°. In general, g(x) can always be
defined as a solution of the Dirichlet problem Vg = —1, g|,, = 0.

Substitution of (2.21) into (2.20) results in the problem for

W 1, Vg - Vg _ F(x)

i 2V v+ g Vy+ | B+ 22 v, Y(x,0)= 20 (2.24)
matching the structure (2.1), so that its solution is provided by the Feynman—Kac formula

F(&) e 3 Vg (&)
lpx,t—E{ e i , B(&) =B+ <0, 2.25
o) (&) () =50 2g(¢) 223

with averaging over the trajectories of the random motion & governed by the equation

d&" = dw, + Adt, 4 =Vg/g, (2.26)

driven by the standard Brownian motion w,. Due to the inequalities (2.23), the drift 4 from (2.26) is ori-
ented from the boundary 0G inwards to G. So, the closer & comes to 0G the more deterministically & is
pulled back into G. As a result the trajectory of & stays inside G, softly bouncing from the unreachable
boundary 0G. Since & never leaves G, the expression (2.25) involves values of F(x) only inside G where they
are defined by the problem (2.24). Therefore, y(x, ¢) is consistently defined by (2.25) anywhere inside G and
it has finite values on 0G, which guarantees that the product (2.21) obeys all the conditions of the Cauchy
problem (2.24) with Dirichlet boundary conditions.

3. Bismut formulas
Since the Feynman-Kac formula (2.14) provides the solution ¢(x, ) of the problem (2.1) at any point

x € RY, it also formally determines the spatial derivatives of ¢(x,¢), as well. However, (2.14) does not
suggest a direct method for computing such derivatives, which severely restricts the use of probabilistic
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methods in applied problems, where it is often equally as important to compute the gradient of the un-
known function as the function itself. This chronic drawback of the original Feynman-Kac formulas has
been eliminated by the so-called Bismut formula (Bismut, 1984), originally published in 1984 and then
widely discussed (Driver, 1997; Elworthy, 1992; Elworthy and Li, 1994; Norris, 1993) in the 1990s. To gain
some insight into the nature of the Bismut-like formulas we derive here some such formulas representing
derivatives of the solution of the problem (2.1) with constant coefficients.

We first derive, for example, an expression for the second-order derivative

. 62(;’>(x + /11171 + 1252, t)

D?
04104,

v1ﬁ2¢(x7 t)

: (3.1)

A1=0,2,=D

of the solution of (2.1) along the independent vectors ¥, and ;.
If the coefficients of the problem (2.1) are constants, then the integral (2.9) representing its approximate
solution ¢,(x,¢) through ¢,(x, ¢ — ¢) degenerates to the form

esB

b, (x,1) :W

l/e#m@@+d+Aﬁerﬁ (3.2)
Ry

which eventually leads, after » iterations, to the expression

@WQZE%%WAQGM“%W%ﬁ+gﬁM%“dﬁ,nmﬂ, (3.3)
where

&y =ned + A(®) + By + - +W,), ne=1, (3.4)
and

¢, (x+&,,0) = F(x+ &), (3.5)

in which F(x) is the initial-data function from (2.1). Therefore, combining (2.7) with (3.3)—(3.5) we conclude

that the derivative D7 ; ¢ can be represented as the limit

Dl b(x,1) = lim D} 1, (5, 1), (3.6)

610

of the approximation

d*p,(x + 1By + o, t
Di () = SO0 L0 ) (3.7
where
@@+Ma+b@n=(£%§ﬁéweW**ﬁmn%mmw“@m, (3.8)
and
Vo =X 4 M1 + Joly + A[W) + W + - + W] + ned, ne=t. (3.9)

Let us select two independent indices i and j from the range 1 <i,j <n, and re-arrange the order of the
terms in (3.8) representing y, as

Vo =X A LA+ A+ + (B L ATB) 4+ (B + A7)+ W, (3.10)
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where the indices i and j are not required to follow in the shown order i < j. Then, the integral (3.8) is
reduced by the substitutions

Wi+ WA = Wy, Wy AT — Wy, (3.11)

to the form
. o tB B (o) 26 . .
(f)H(X‘f‘/LlUl +)v2U2,ZL) :7”/ e AT F(z,,)dwl,...,dw,,, (312)
(Vzm2)"™ Joos

where

B, (Wt W) = Wi+ (B — AT B) A+ (B — A7)+ W (3.13)
and the points

Zy =X+ tA+ AWy + AWy + - + A, (3.14)
do not depend on 2;, 4. Then, straightforward differentiation of (3.12) by 4; and 4, yields

n2elB o~ (¥ ++39,) /26
D ulx, 1) == / F(z,,)(/rlal -wi) (/1’1172 -wj) dWy,....dW, (3.15)
t RV (\/é;r—g)
and evaluating the integrals with respect to w; by the quadratures (2.10) we obtain the formula
2 n’e’ 1 1
D} s t) = E{F(én)(A’ o ~Awi) (/r B - Aw,) } (3.16)

which represents the second-order derivatives of ¢, (x, ?) as a weighted average of the values of the function
F(x) at the end-points

&y = x4 tA 4+ A(AW + Ay + - - + AW,), (3.17)

of the discrete Brownian trajectories determined by the independent random vectors Awy, Aw,, ..., Aw,,
distributed by the Gaussian law with the standard deviation D = ¢ = ¢/n.

Although the formulas (3.16) explicitly represent the derivatives of the approximate solution ¢, of the
problem (2.1), the presence of the factor n> makes these formulas unsuitable for passing to the limit
t/n = ¢ — 0. However, since the representations (3.16) remain valid for any indices i and j from the range
1<i, j<m, it is possible to combine these formulas into expressions that do admit passage to the limit
& — 0. Thus, the arithmetic mean value of all the formulas (3.16) has the structure

1 e e s ale
Dl b, (x,1) = ﬁE{F@n)e'Bg(A 5, - Aty (4715, Aw,->}, (3.18)
i,j=

which converges in the limit n — oo to the Bismut formula (Elworthy and Li, 1994)

D, (x,1) = E{F(&)e 72, (1)}, (3.19)
where

1 t t
2 x —1= - 1= -

Zoe) =5 [ [ (475 am,) (45 am). (320)
is a functional depending on the trajectory of the random motion

& =x+td+w, (3.21)

driven by the standard Brownian motion w;,.
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It is instructive to observe that the formula (3.19) is not unique, but is a very particular representative of
a broad family of similar formulas that can be derived from the basic formulas (3.16) by different kinds of
averaging with respect to the indices i and j. For instance, any function p,(sy, s,), integrable on the square
0 <5y, s, <t generates the representation (3.19) with the functional

2 L 1 1
vaz([éf]) = % A /O pl(slas2) <A7 Uy - dﬁ;sl) <A7 vy - dw.vz)7 (322)
where
t t
P = / / Pi(s1,52) dsy dsa. (3.23)
o Jo
Indeed, to derive (3.19) and (3.22) it suffices to average formulas (3.16) with the weights
t 1
o= [ as [ plusydn n=in 4= (3.24)
i ti—1 tj—1

and then to pass to the limit ¢ — 0.
It should also be mentioned that formulas (3.19) and (3.22) admit straightforward generalizations
providing probabilistic representations of any derivatives of the solution ¢(x, ¢) of the problem (2.1). Thus,

the derivatives of the kth order along the k-tuple v = {#;,,,...,7;} of independent vectors ;, are repre-
sented by the mathematical expectations
Di(x,1) = E{F(&e’ 7y (&)}, v={t.D,.... 5}, (3.25)

where the ‘differentiating’ functionals Z*([¢]) are determined on the trajectories of the random motion &
from (3.21) by the integrals

gk([gﬂ)%/ot /Ot.-./otp,(sl,sz,...,sk)]'[(Alai-dwxl.), (3.26)

i=1

t t t
2, :/ / / Dpi(s1,82, .-, s¢) dsydsy - - - dsy, (3.27)
o Jo 0

involving an arbitrary density p(si, s, ...,s;) integrable in the domain 0 < sy,$,...,8; < .

In conclusion of this brief discussion of the Bismut formulas it must be emphasized that they admit
extensions (Bismut, 1984; Driver, 1997; Elworthy, 1992; Elworthy and Li, 1994; Norris, 1993) going far
beyond the elementary cases considered here, and they deliver, in particular, probabilistic expressions for
the derivatives of the solutions of the problem (2.1) with non-constant coefficients, which makes it possible
to apply the techniques outlined at the end of Section 2 and to obtain probabilistic expressions for the
derivatives of the solutions of the problem (2.1) in a finite domain with imposed boundary conditions.

4. Probabilistic formulas for elliptic equations

Here we consider a second-order elliptic equation

ZA5F+A Vu+Bu+F =0, (4.1)

with constant coefficients A;;, A4 and B.
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It is clear that (4.1) can be obtained by the integration of the parabolic equation (2.1) by the time
variable from zero to infinity. From this it follows that if the integral

u(x) = /0 T o, (42)

where ¢(x, ) is the solution of (2.1), converges then it represents the solution u(x) of the elliptic equation
(4.1). As for the convergence of (4.2) it may be guaranteed by different conditions on the coefficients of Eq.
(4.1). For example, the requirement B < 0 guarantees the convergence of (4.2) to the solution of (4.1) with
any bounded function F(x) and with any vector coefficient A. Also, the inequality A # 0 and the esti-
mate |F(x)| < O(e”M"), « > 1, guarantee the convergence of (4.2) independently of the value of the coeffi-
cient B.

Assume that the integral (4.2) corresponding to Eq. (4.1) converges. Then, combining (4.2) with the
Feynman-Kac formula (2.14) we arrive at an explicit formula

u(x) zE{ /OOCF(ff)etht}, E =x+tAd+ Aw,, (4.3)

which determines the solution of Eq. (4.1) as the mathematical expectation computed over trajectories of
the random motion & determined by the standard Brownian motion w, transformed by the diagonal matrix
A = diag[A,y,. .., Ayy]. Similarly, combining (4.2) with the Bismut formulas (3.25)—(3.27) we conclude that
the derivatives of the solution of (4.1) are represented by the mathematical expectations

Dhu(x) = E{ /OOCF(gj)e’B@’;([é’,‘D}, v ={By,0,...,5}, (4.4)

with the differentiating functionals Z* from (3.25).
To simplify further the expressions (4.3) and (4.4) we recall the Monte-Carlo quadrature

/ R di = %E{F(r)e/ﬁ}, B> 0, (4.5)

where the mathematical expectation is computed over the random numbers 7 distributed by the well-known
(Feller, 1967; Rozanov, 1995) exponential law

P(t>1)=¢ " (4.6)

Then, applying (4.5) to (4.3) and to (4.4) we represent the solution u(x) = D%(x) of Eq. (4.1) and its de-
rivatives Dfu(x) as the mathematical expectations

0

Dhu(x) = %E{F(a)eﬂ“m@k([gﬂ)}, £ = x + AW, (4.7)

with the differentiating functionals Z%([¢]]) from (3.26), and with the averaging extended over the trajec-
tories of the random motion & from (4.3) launched at the time 7 = 0 from x and interrupted at the random
instant T with the exponential distribution (4.6).

Since formulas (4.7) remain valid for a broad class of functionals Z* ([¢]) described by the integral (3.25),
it is not surprising that by restricting these functionals to narrower classes one may obtain simpler rep-
resentations than (4.7) for the derivatives of the solution of (4.1). For example, the first-order derivative of
u(x) along the vector ¥ can be represented by the formula

Dlu(x) = E{ /0 T R(Ee (/rla. dw,) } (4.8)
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whose only distinction from the Feynman-Kac formula (4.3) representing u(x) is that the integration by
the Lebesgue measure df appearing in (4.3) is replaced in (4.8) by the integration with respect to the sto-
chastic measure (/1*117- dw,). Indeed, to derive (4.8) we apply (4.2) and represent the derivative of u(x) as
the sum

= lim ZD O(x, t)AL, 1 = kAt (4.9)

At—0

Then, we compute the derivatives Di¢(x,#;) by the Bismut formulas

A A fii1
DLo(x, 1) E{ re )erk(”TtW’k)}, A, = / A7'G - diby, (4.10)
73

which follow from (3.26) with the density p, (s) uniformly distributed on the interval 7 <s < #, and
vanishing for any other s. Finally, substituting (4.10) into (4.9) and passing to the limit Az — 0 we arrive at
(4.8).

To get an indication of the practical efficiency of the obtained probabilistic solutions of the elliptic
equations (4.1) we consider a particular two-dimensional equation

1 1

S ) + (- u) —Su+ F =0, (4.11)
where

7 e H?)
F(x) = <§+2x+2y—4x2—2y2> , (4.12)
Y
which has the following exact solution and its derivatives
ef(xz‘f’yz)
u= o= =2xu, up=—2yu, uy, = 4. (4.13)
T )

Fig. 1 shows the results of the numerical simulation of the function u(x, y) from (4.13) considered as the
solution of (4.11). The first diagram of Fig. 1 shows the profile of u(x, y) along the horizontal axis y = 0.2.
The continuous line shows the exact values of u(x,y) computed by (4.12), while the circles ‘o> mark u(x, y)
simulated by the probabilistic formula (4.7) with k£ = 0. Similarly, continuous lines in the second diagram
show the first-order derivatives u,(x, y) and u(x, ) computed by the analytic formulas from (4.13), while
the ™" and ‘A’ mark, respectively, the values of «(x,y) and u/(x,y) simulated by the formulas (4.7) with
k =1 and with the ‘differentiating’ functionals

)=t [(5.am =" where 52, or 52 4.14
,/5([g,])—t Ov~ Wy=——, where7=¢, orv=¢, (4.14)

defined by the integral (3.25), with the density p,(s) uniformly distributed on 0 < s < z. Finally, the second
derivative ;) (x, y) of the solution of (4.11) is displayed on the third diagram, where the continuous line
corresponds to the exact values, and diamonds ‘(>’ correspond to this derivative simulated by the formula
(4.7) with the differentiating functional

ZA(9 t2/ / (€ - dwy,) (&, - dws)z()#, (4.15)

The mathematical expectations were estimated by averaging over the total number of 6000 independent
random walks

(x,y) — (x,») + A+ Vow. 4=(1,1), (4.16)
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Fig. 1. Simulations by the Feynman-Kac and Bismut formulas.

where W, is a random vector normally distributed in R?, and 7 is a random number distributed by the
exponential law (4.6) with the parameter f = 1/2. To reduce the variance of the probabilistic computations
we included in the averaging the path (4.16) driven by the Brownian motion w,, together with three
associated paths: two paths corresponding to the Brownian motions symmetrical to w, with respect to
the Cartesian axes, and one path driven by the Brownian motion symmetrical to w, with respect to the
center of coordinates.

To conclude this section it is instructive to discuss the Poisson equation

1
EVZM +F =0, (4.17)

which may be treated as a particular case of (4.1) with A= 0, B=0and with A; = 1 for all 1 <i<N. The
difficulty of the probabilistic analysis of this problem comes from the observation (Busnello, 1999; Revuz
and Yor, 1991) that the Feynman—Kac formula (4.3) corresponding to Eq. (4.17) considered in the entire
space R" diverges. However, it is also known (Busnello, 1999) that if F € I? N L4, with 1 <p < 2 < g < o0,
then the Bismut formula

Dysu(x) :E{ /OOOF(x—&-W,)q'; dt}, (4.18)

converges to the derivative of the solution u(x) of (4.17) along the vector ¥. Therefore, applying the
quadrature (4.5) with some positive parameter § > 0 we can convert (4.18) to the convergent formula

Dsu(x) = %E{F(x + . )el” ﬁTw } B >0, (4.19)
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where the averaging is extended over all Brownian motions w, interrupted at the random time 7 distributed
by the exponential law (4.6) with the parameter > 0. Similarly, for the second-order derivatives of u(x) we
obtain the representation

Uy -

D% u(x) = %E{F(x—i—v_&r)e&w# }, >0, (4.20)

GiE2)

where all of the notation retains its meaning from (4.19).

It should be emphasized that the Bismut formulas (4.19) and (4.20) representing derivatives of the so-
lution u(x) of the Poisson equation (4.17) converge even though the Feynman—Kac formula (4.3) for u(x)
diverges. This difference is due to the additional factors whose estimates

E{w'ff'}:o(\/%) T — 00 (4.21)

guarantee at least slow convergence of (4.18) and, consequently, of (4.19) and (4.20), even when
E(|F(&)|) = O(1), which is not sufficient for the convergence of (4.3) with B = 0. Such differences in the
convergence of the Bismut and Feynman—Kac formulas is characteristic for equations of the type (4.1) with
A =0and B = 0. But when B < 0, as in the case of (2.23), which arises in the analysis of Dirichlet boundary
value problems in a domain G, the convergence is guaranteed both for the Feynman-Kac and Bismut
formulas.

To illustrate the divergence and convergence properties of the probabilistic formulas (4.19) and (4.20) for
the Poisson equation we applied these formulas to Eq. (4.17) on the plane R* with the function

0.4 T T T T T T T

Solution

1st Derivatives

2nd Derivative

x—coordinate (y=0.2)

Formula (4.3) for the solution of the Poisson equation diverges,
but similar formulas for the derivatives of this solution converge.

Fig. 2. Probabilistic solution of the Poisson equation.
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ef<x2+yz)
F(x,y) =2(1 =% =) : (4.22)
T
which implies that
e—(x2+y2)
U=——, u, = —2xu, u,=—2yu, u; =dxu. (4.23)

The results of the numerical simulation of the functions from (4.23) are presented on Fig. 2 in the same
format as used on Fig. 1. The mathematical expectations were estimated by averaging over 10,000 inde-
pendent random walks (4.16) with A4 = 0 and with the parameter f set to f = 0.5. The first diagram, dis-
playing the function u(x,y) clearly shows divergence of the Feynman—-Kac formula (4.3) corresponding to
the Poisson equation (4.17) and (4.22). At the same time, the second and the third diagrams of Fig. 2
demonstrate convergence of the formulas (4.19) and (4.20) representing first and second derivatives of

u(x, y)-

5. Probabilistic solution of a triangular system of equations

To make our approach to systems of partial differential equations more transparent we first consider a
triangular system

S’lul +’)/D%162M2 +E :O7 (51)

gzuz + Fz = 0, (52)

where 7 is a constant, ¥; and ¥, are independent constant vectors, Fj are smooth functions and
ZA/»ua 2+A1< V+Bk7 k=12, (53)

are second-order differential operators with constant coefficients.

Egs. (5.1) and (5.2) may certainly be solved by two subsequent applications of formulas of the type (4.7).
Indeed, we may first compute u, by the formula (4.7) applied to Eq. (5.2). Then, applying (4.7) to Eq.
Luy + F =0 with the already defined function F = F} + yDa@uz, we compute u;. It is clear that the
straightforward implementation of this iterative approach requires computation of u, over the entire space,
which eliminates one of the main advantages of probabilistic solutions, that is, the possibility of computing
the unknown functions only at certain required points. However, we will see here that the use of proba-
bilistic formulas makes it possible to implement the described iterations in a direct one-step procedure
which efficiently solves triangular systems of equations of the type (5.1) and admits generalization to more
general systems of differential equations, such as the Lamé equations of the theory of elasticity discussed in
Section 6.

Assume for the moment that u, is already known. Then (5.1) can be treated as an equation of the type
(4.1) with respect to the unknown function u; and with the pre-defined term F = F| + yD%1 5 2. Therefore,
after introducing the diagonal matrices

Ak = diag[/lk]] y Ak,227 e 7Ak,NNL k = 1, 2, (54)
and applying (4.7) we arrive at the identity

SRR )0 45D (@)@}, (53

ul(x) = ﬁ
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where the averaging is extended over the trajectories of the random motion
E=x+1d + 4w, 0<1<1, (5.6)

launched at the moment ¢ = 0 from the point x, and interrupted at the random time 7; with the exponential
distribution (4.6).
Then, applying the Bismut formula (4.7) to (5.2) we represent the derivative Dyus (&) by the formula

Dans(&) = E{B(&)e> ™ Pl (5.7)
where
Q — [ﬁl i Al(wfz B v_‘;Tl )][52 ) Az(wfz - wﬂ)} (58)
3/12‘11/12‘22(& -1 )2
and the mathematical expectation is computed over the trajectories of the Brownian motion
E=& +({t—tn)d+ MW, u<t<n, (5.9)

passing at the instant # = 7, through the pointx; = £ , and interrupted at the random time 1, distributed by
the exponential law

P, — 1 > 1) =e P2, (5.10)
Finally, combining formulas (5.5) and (5.7) we arrive at the expression
up (x) = E{E(fil)en(lﬁwﬁ) _j’_F‘z(fzz)Qefl(51+ﬂ)+72(32+ﬂ)}7 (5.11)

which directly represents the solution u; of the system (5.1) and (5.2) by the mathematical expectation
computed over the two random numbers 7, and 7, distributed according to (4.6) and (5.10), and over the
trajectories of the random motion launched from the observation point x and controlled by the stochastic

equations (5.6) and (5.9). Similarly, for the derivatives Dfu; of u; along the k-tuples v = {7y, ..., ¥} we get
the expression
Dhuy(x) = {gk([é ) [Fl(fi Jen B 4 py (& )QeTI(Bﬁ/?)Hz(Berﬁ)} }’ (5.12)

whose only difference with (5.11) is the presence of the differentiating functional Z* »([&},]) defined by for-
mulas of the type (3.26) and (3.27), and depending on the trajectory of the random motion & on the initial
time-interval 0 < ¢ < 7;. As for the function u, and its derivatives, they can be computed by the Feynman—
Kac-Bismut formulas (4.7) applied to Eq. (5.2).

6. Probabilistic solution of Lamé-like equations

Finally we consider a system of elliptic second-order differential equations
glul —|—'VD‘M2—|—F'| ZO, De EDEléza (61)

gzuz + yDcul + FE = 0, (62)

where €|, &, and y are constants, Fj(x) and F(x) are bounded functions of x € R",

ZAkua 2+Ak V+Bk’ k:l’27 (63)
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are scalar differential operators with constant coefficients. It is clear that the Lamé equations (Sokolnikoff,
1956) describing the plain-strain state of an elastic medium can be viewed as a two-dimensional case of (6.1)

and (6.2) characterized by the coefficients
Ain = A%,zz =+ 2p, A%‘zz = Ag,n =p, P=it+u (6.4)
A =4,=0, B =B,=0, '

where 4 and u are the material constants of the elastic medium. Here we develop a probabilistic approach to
the system of equations (6.1) and (6.2).

To analyze this system by the iterative scheme applied above to a triangular system (5.1), we first in-
troduce diagonal matrices

A = diag[/lm,/lm, ceey Al,NN]a Ay = diag[/lz‘,m /12,227 cee aAZ,NN] (6~5)

generated by the coefficients of Eqgs. (6.1) and (6.2) respectively. Then, treating (6.1) as an equation of the
type (4.1) with respect to u;, we derive from (4.7) the identity

up(x) = E{QlF(ff,) + "/QlDeuz(ffl)}, 0, =ePrhmyp (6.6)

where the mathematical expectation is computed over the trajectories of the random motion &, which starts
at the moment ¢ = 0 from x, runs thereafter as

E=x+1d + 4w, 0<1<1, (6.7)

where W, is the standard N-dimensional Brownian motion, and stops at the random time ; distributed by
the exponential law P(t; > ¢) = e~ with some positive parameter f§ > 0.

After that, we treat (6.2) as an equation with respect to u, and applying (4.7), represent the derivative
Deuy(&7,) appearing in the right-hand side of (6.6) by the formula

Dan(&) = E{sz (éiz) + 7gDeuy (61‘2) } (6.8)
with the factor
q=2(ENe" 2B, 1<t <, (6.9)

where Z.([£]]) is a functional (3.26) and (3.27), defined on trajectories of the random motion
& =8 +({t—u)d+ M., T<t<, (6.10)

running on the time interval 7y <t < 1,, where 7, is a random number distributed by the law
P(t; — 11 > t) = e =) with the same parameter > 0 as in (6.6).
As a result, after the substitution of (6.8) into (6.6) we obtain the identity

ur(x) = E{QlFl(é;) +990115(E,) + yquIDeul(é’;)}, (6.11)

whose right-hand side contains the derivative D.u (£ ), which can be represented by the Bismut formula
(4.7) applied to Eq. (6.1), etc. _

It is clear that the described iterations can be started from Eq. (6.2) as well as from (6.1), and that these
iterations can be continued indefinitely resulting in the series

y (x) = E{ i Qka;(éf;”)}, n=12, (6.12)
k=1

whose components have the meaning described below.
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The indices v} take one of the two possible values v =1 or v = 2 determined by the rule

. Jn, k=135 ...,

v"_{ﬁ, ifk=2456,.. .. (6.13)
where

_ I, ifn=2,

”_{2, if n=1. (6.14)

The random numbers 7; form a monotonic sequence
OE‘E()<‘L'1<‘L'2~"<‘C](71<‘E/(<"'7 (615)

known as the Poissonian stream (Feller, 1967; Rozanov, 1995) characterized by the exponential distribu-
tions

Pty — 1 >1) =e M. (6.16)

The continuous random motions & are launched at the time ¢ = 0 from the observation point x and are
controlled thereafter by the stochastic equation

Andwn if T2j <t < T2j+15

Q' =X dot= {A,,dfv,, if Ty <1 < 1. (6.17)
The factors Q, are defined by the recursive formulas

01 = eBthm /. (6.18)

Or = Qi1 Z([E])eBr P /g, V=Y, T SE< T, (6.19)

involving the values of the functional Z.([¢"]) defined on the trajectories of the random motion & be-
tween consequent moments t; of the Poissonian stream (6.15).

It is worth mentioning that formulas (6.12) for the solutions of Egs. (6.1) and (6.2) can be readily
modified to represent also the derivatives of these solutions. Thus, for the derivatives D7u, of u, along the
m-tuples v = {¥y,...,7,} we get the expression

Djuy = n(x) = E{QT([E‘Z;ID Z QkEv;;(ff;”)}, n=1,2, (6.20)
k=1

whose only difference with (6.12) is the presence of the differentiating functional @;"([é;]) defined by the
formulas of the type (3.26) and (3.27), and depending on the trajectory of the random motion ff’l on the
initial time-interval 0 <¢ < 7.

To discuss the convergence of the series (6.12) it is convenient to look at it from another point of view.
Let 5,”,;1 be the operators inverse to .#; from (6.3), existing due to the ellipticity of .#;. Then, Egs. (6.1) and

(6.2) can be converted to the form
u + 9L Do, + L7F =0,

P R (6.21)
uz—l—yfz_ Deul +$2_ F2 :0,

which can be split, after one iteration, to a system of two uncoupled equations

up — Ty = fi, uy—Thuy, = f, (6.22)
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with the operators

h =y*%,'D.%,'D,, T, =7"%,'D.%;'D,, (6.23)
and with the right-hand sides

Li=92' DLy B~ 'R, fi=92,'DZF - 2,'F (6.24)
Eq. (6.22) can be formally resolved by the Neumann series

Up = fo+ Tfo + T+ T fot o, n=12, (6.25)

and comparing the procedures that led to (6.25) and to (6.12), one can conclude that the probabilistic
formulas (6.12) are just special implementations of (6.25) in a similar way that the probabilistic solution
(5.11) of the triangular system (5.1) is just a special implementation of the solution of (5.1) obtained by the
obvious two-step iterative process outlined in the beginning of Section 5.

From the above it follows that the probabilistic series (6.12) converges to the solution of (6.1) and (6.2)
when and only when the Neumann series (6.25) converge. Therefore, to justify the probabilistic approach to
the plain-strain problems of the theory of elasticity it suffices to prove convergence of the Neumann series
(6.25) corresponding to the two-dimensional Lamé equations which have the structure (6.1)—(6.3) with the
coefficients from (6.4).

Let i,(w;,w,), where n = 1,2, be the Fourier transforms

i, (W1, w2) Z%/ U, (X1, x)€1MT242) dx) dxy, (6.26)
RZ

of the unknown functions of the Lamé equations (6.1)—(6.4). Then, Eq. (6.22) associated with (6.1)—(6.4) are
converted by the Fourier transform to the algebraic equations

(1 - T)u —f. n=1,2, (6.27)

where f, are the Fourier transforms of the right-hand side functions f, from (6.24), and
(A + w’'wing
(2 + 2u)wi + pw3][(Z + 2u)w3 + pwi]”
as follows from the definitions (6.24) of the operators 7, involved in (6.22). Finally, we observe that the
obvious inequalities
(24 2mwi + uws = (2420w, (24 2mws + pw; = (2 + 2w, (6.29)
generate the estimate
) 2
ERGUE]
(A+2u)
which guarantees the convergence of the Neumann series for the algebraic equation (6.27) and, conse-
quently, of the Neumann series (6.25), as well as of the probabilistic series (6.12), corresponding to the
Lamé equations (6.1)—(6.4).
It is rather clear that the above presented proof of convergence of the series (6.12) and (6.25) corre-
sponding to the two-dimensional Lamé equations can be extended to general elliptic systems of the type
(6.1) and (6.2), but here we do not go into the details of such an analysis.

To get an indication of the practicability of the probabilistic approach to systems of differential equa-
tions we considered the following system of two-dimensional equations:

T =T(w,w) =

(6.28)

(6.30)

1 " " 1 1 1 " " 1 "
§<uxx+%uyy) 7u+§vxy :flﬂ E(%Uxx+vyy) - U+§uxy :f27 (631)
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with the factors % introduced to make (6.31) match the structure in (6.1)—(6.4) with the operators
1/ 10 1/1 0 © 1 @
L=z —=5+5=— PLr==|z—=+— Do == ——, 6.32
1 2<6x2+36y2>’ ? 2(36x2+8y2)’ / 3 Ox0y (632)

that arise in the analysis of the plain-strain state of the elastic material with Poisson’s ratio ¢ = 0.25, typical
for steels. The right-hand sides f; and f> in (6.31) are defined by the formulas

file,y) = ZLix(xy; 5 1) = 5 (e y; 5 1) 4+ pDex(x, 73 1,3,

(6.33)
fQ(X’y) = gZX(xay; 17711) - X(X,% 13%) + VDL‘X(xvy;%a 1)7
where
pe” (x2+37)/2D
x(x,y; D, p) = 2.0 (6.34)

is the scaled Gaussian function.
It is clear that the exact solution of Egs. (6.31) and (6.33) is

u(x) = 1(x,:5 1), vlx) = x2(xy;1,3). (6.35)

On the other hand, these equations can be considered as a particular case of the system of equations (6.1)
and (6.2) with the parameters
An=1 Ain= ! B =-1 !
111 ) 1,22 /3 1 y Y 3

MAp=1, By=-1, ¢é =¢é, é=E¢é,

| (6.36)

\/g )
where €, and €, are the Cartesian coordinate vectors.

The first diagram of Fig. 3 shows the solution u(x, y) along the line y = 0.2. The second diagram shows
its first derivatives and the third diagram shows the mixed second-order derivative u] (x,y). The continuous
lines in all diagrams display the results computed by the analytic formulas (6.35), while the circles ‘o’ and
diamonds ‘¢’ mark u and u;,, respectively, simulated by the probabilistic formulas (6.12)—(6.20). Similarly,
in the second diagram the triangles >’ and ‘A" mark the simulated values of u, and u, respectively. All
mathematical expectations were approximated by averaging over 10,000 random walks described by Eq.
(6.17) and switching modes at the random moments 7y, 7, . . ., 74, forming the Poissonian stream (6.15) and
(6.16) with the parameter f = % The numerical results were obtained by retaining five terms in the series
(6.12), although the contribution of the 5th term was already practically negligible. To reduce the variance
of the probabilistic computations we included in the averaging every random path & driven by the
Brownian motion w, together with the associated paths driven by the Brownian motions symmetrical to w,
with respect to each of the coordinate axes and with respect to the center of the coordinates.

As an another example we consider the system of equations

Ay =

1 1 1 1
S+l 30l = fi Sl )+ 3 = (6.37)

with the right-hand sides
fl(x>y) = gl%(xay;%v 1) + “/DcX(X,y; 17i)a
So(xy) = Loy (x,p; 1,5) + 1D (x, 333, 1),

defined by the Gaussian function y(x,y; D, p) from (6.32) modified by the operators ¥, ¥, and D, in-
troduced by (6.32). It is clear that (6.37) are the Lamé equations of the plain-strain state of a medium with

(6.38)
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Fig. 3. Probabilistic solution of the system of equations.

the Poisson ratio ¢ = 0.25, and that Eq. (6.37) with the right-hand sides (6.38) have the same exact solution
(6.35) as in the previous example.

The difference between Egs. (6.38) and (6.31) is the absence in (6.37) of the damping terms ‘—«’ and ‘—v’
whose presence guarantees convergence of the expression (6.12) for any bounded functions f(x) and f>(x).
From the discussion in the end of Section 4 it follows that the Feynman—Kac formula (6.6) representing u,
as the solution of (6.1) with pre-defined f; and u, diverge, from which it follows that the expression (6.12)
based on (6.6) also diverges. However, from that discussion it also follows that the Bismut formulas (6.8)
and (6.20) still converge to the derivatives of the solutions u and v of the system (6.37). The last observation
means that if # and v are Cartesian displacements of the elastic medium in the plain-strain state, then the
corresponding components

Ou ov 1 /0u Ov
XX T A v AL xw — A\l AT 2. | 6.39
Gr =gy Ty B 2<6y+6x> (6.39)

of the strain tensor can be computed by the probabilistic simulation.

The results of the probabilistic simulation of the solution of Eq. (6.37) are shown in Fig. 4, where the first
diagram displays the first-order derivatives u, and w,, while the second diagram shows the second-order
derivative u]. All of the computations were made by the same algorithms as used in the previous example.

Here we have applied the random walks approach to systems of partial differential equations with
constant coefficients considered in the entire N-dimensional space. Since the results look promising the
question arises about possibilities of extending the approach to systems of equations with variable coeffi-
cients and to boundary value problems for systems of equations considered in a bounded domain. In this
regards it is appropriate to observe that our approach is based on the ability to obtain probabilistic rep-
resentations of the derivatives of the solution of scalar differential equations. At the end of Section 3 it was
mentioned that the Bismut formulas provide such representations and are extendable to problems with



6304 B.V. Budaev, D.B. Bogy | International Journal of Solids and Structures 40 (2003) 6285-6306

1st Derivatives
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Fig. 4. Probabilistic solution of the system of Lamé equations.

variable coefficients. This indicates that our approach can be extended to systems of equations with variable
coefficients and, consequently, as discussed in Section 4, to boundary value problems.

7. Conclusion

The results presented here suggest that the synthesis of the Feynman—Kac and Bismut formulas provides
a promising probabilistic approach to partial differential equations of the theory of elasticity. The ad-
vantages of this approach include, but are not limited to, versatility, the possibility of computing the
functions of interest at isolated points without computing them on massive meshes, and the opportunity of
having simple scalable implementations with practically unlimited capability for parallel processing.

Here we explored the basic ideas of the random walk approach to problems of elasticity and considered
only elementary examples that illustrate its applications to the analysis of the system of Lamé equations in
the entire homogeneous isotropic elastic medium. In future papers we plan to extend the approach to
problems of elastostatics in bounded, possibly inhomogeneous and anisotropic media, and also to problems
of propagation and diffraction of elastic waves.
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