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Abstract

A probabilistic approach to systems of partial differential equations is developed on the basis of the well-known

Feynman–Kac and Bismut formulas providing explicit probabilistic representations of the solutions and of their de-

rivatives of scalar differential equations. Some numerical examples are also included. In particular the Lam�ee equations
of elastostatics are solved and the results are compared with some known exact analytic solutions to demonstrate the

efficiency of the approach.
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1. Introduction

It is attractive to have solutions of applied mathematical problems in forms that permit the computations

of interest at isolated points without computing the functions on massive meshes. For many problems

described by partial differential equations such solutions are delivered by the so-called Feynman–Kac

formulas (Dynkin, 1965; Freidlin, 1985; Simon, 1979) involving mathematical expectations of specified

functionals on random walks associated with the equations under consideration. These formulas and their

numerous variations may be considered from many different points of view, some of which are discussed in

(Simon, 1979). Since all of the approaches somehow involve the averaging over trajectories of random

walks, it is appropriate to use the term �random walk method� for any method of analysis in which the
formulas require averaging over random motions.

Random walk methods have been used since the 1920s (Courant et al., 1928; Khinchin, 1933; Petrovsky,

1934; Wiener, 1923) for the analysis of scalar parabolic and elliptic positive-definite partial differential

equations describing, respectively, diffusion processes and equilibrium states. The advantages of these

methods include versatility, unrestrictive requirements on the problem�s data, the possibility of computing
functions of interest at isolated points, and the possibility of implementations employing simple scalable

algorithms with virtually unlimited capability for parallel processing. Nevertheless, the practical impact of
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random walk methods has been limited, partially because these methods have not been extended to problems

of wave propagation or to problems described by systems of coupled partial differential equations, such as

the Lam�ee equations of the theory of elasticity or the Maxwell equations of electrodynamics. However, in
recent years there has been increased activity in the further development of probabilistic methods of analysis
of physical problems. Thus, in (Busnello, 1999) the random walk method is applied to the analysis of the

Navier–Stokes equations of hydrodynamics, and in (Chati et al., 2001; Grigoriu, 2000; Shia and Hui, 2000)

random walks are applied to certain restricted problems of elasticity. Quite recently attempts have also been

made to apply similar methods to steady flow computations (Hunt et al., 1995) as well as to acoustics and

electromagnetics (Galdi et al., 2000, 2001, September–October; Nevels et al., 2000; Schlottmann, 1999), and

these methods are increasingly used for analysis of geophysical wave propagation such as in (Bal et al., 1999,

2000), where the competitiveness of random walk methods in wave propagation is discussed.

Following this trend we recently launched a program aimed at developing simple, but theoretically exact,
random walk solutions of problems of elastic wave propagation. In the first stage, the solutions of the scalar

Helmholtz equation in the entire space and in simple exterior domains were represented in the probabilistic

form (Budaev and Bogy, 2001, 2002a,b) which was numerically tested on elementary examples admitting

simple analytic solutions for comparison. Later, in (Budaev and Bogy, 2002a,b,c), it was shown that the

random walk method makes it possible to describe such phenomena of wave propagation as backscattering,

which is predicted neither by the ray method nor by a more general method of parabolic equations (Fock

and Leontovich, 1946; Fock, 1965). Most recently in (Budaev and Bogy, 2003a,b,c) we applied the method

to the analysis of wave propagation in canonical domains: waves in wedges and cones are considered in
(Budaev and Bogy, 2003b); waves in exterior cylindrical and spherical domains are discussed in (Budaev

and Bogy, 2003c); and in (Budaev and Bogy, 2003a) the important problem of diffraction by a plane wedge-

shaped screen is solved by the method from (Budaev and Bogy, 2003a,b,c).

Here we present an extension of the random walk method to a class of systems of linear second-order

partial differential equations that includes the Lam�ee equations of the theory of elasticity. For the sake of a
transparent presentation of the basic ideas this paper is restricted to the discussion of the Lam�ee equations in
the entire isotropic homogeneous space, or, more generally, to the discussion of systems of coupled dif-

ferential equations with constant coefficients in the entire space. Certainly, the analysis of such equations
from another, even non-conventional, point of view may not create new knowledge about the problems

whose closed-form analytic solutions are easily available. We fully appreciate this point, but note that

without demonstrating the success on elementary models it is hard to justify further efforts in the devel-

opment of a new method. In future papers we plan to consider equations of elastostatics in bounded, not

necessarily homogeneous, domains with various boundary conditions, and to address dynamic problems of

propagation and scattering of elastic waves.

In this paper we start from a brief and elementary discussion of the Feynman–Kac formulas, which

represent solutions of scalar partial differential equations, and of the Bismut formulas representing de-
rivatives of those solutions. Although these results are rather standard, they are included here to make the

present developments more accessible to a broader audience, which includes specialists working with ap-

plications who may not be familiar with advanced stochastic calculus. Then, combining in a certain order

the results for scalar equations we obtain the probabilistic solutions of systems of second-order differential

equations.
2. Feynman–Kac formulas

The probabilistic approach to partial differential equations has been known since the 1920s but it became

widely known several years later, after the papers of Feynman (1942, 1948) and Kac (1949, 1951) where the
solutions of the Schr€oodinger and the diffusion equations were represented in the form which is now usually
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referred to as the Feynman–Kac formulas. Since then, Feynman–Kac formulas have been derived using

several distinctively different methods as discussed, for example, in (Simon, 1979). One such method is

outlined here in order to make the paper self-contained and to simplify the following discussion of the less

known material presented in Section 3.
Consider the initial value problem
o/
ot

¼ 1
2

XN
i¼1

K2ii
o2/
ox2i

þ~AA �~r/ þ B/; /ðx; 0Þ ¼ F ðxÞ; ð2:1Þ
whose coefficients K2ii, ~AA and B are smooth functions of the spatial variable x 2 RN .

If the coefficients Kii and B are constants, and Kii 6¼ 0, then the solution /ðx; tÞ of the problem (2.1) is
given by either of the two following integrals:
/ðx; tÞ ¼ eBt
Z
RN

e	½K	1ðy	x	t~AAÞ�2=2t

ð2ptÞN=2K11K22 � � �KNN

F ðyÞdy ð2:2Þ

¼ eBt
Z
RN

e	~ww2=2t

ð2ptÞN=2
F ðxþ t~AAþ K~wwÞd~ww; ð2:3Þ
where K is the diagonal matrix
K ¼ diag K11;K22; . . . ;KNN½ �; ð2:4Þ

generated by the coefficients of (2.1). If the coefficients of (2.1) are not constants, then the integrals (2.2) and

(2.3) do not solve (2.1), but, nevertheless, they can be used to construct an explicit probabilistic solution of

(2.1).

To solve (2.1) with non-constant coefficients we observe that the evolution equation (2.1) generates a

family of time translation operators
Tt : /ðx; t0Þ ! /ðx; t0 þ tÞ; ð2:5Þ
transferring the solution of (2.1) at the instant t0 to the solution at the instants t0 þ t. Then the solution
/ðx; tÞ of (2.1) can be represented as a composition
/ðx; tÞ ¼ Te � Te � � �Te|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n-times

F ðxÞ; e ¼ t
n
; ð2:6Þ
of consecutive time transitions on a time interval e. If e 
 1 then the operators Te can be approximated by

the integrals (2.2) or (2.3) with the kernel corresponding to the matrix K from (2.4) frozen at the point x.
Then, passing to the limit t ! 0 we arrive at the solution of (2.1) in the form
/ðx; tÞ ¼ lim
e!0

/eðx; tÞ; ne ¼ t; ð2:7Þ
with the approximation /eðx; tÞ determined by either of the formulas
/eðx; tÞ ¼ eeBðxÞ
Z
RN

e	½K	1ðxÞðy	x	e~AAðxÞÞ�2=2e

ð2ptÞN=2½r1ðxÞr2ðxÞ � � � rN ðxÞ�
/eðy; t 	 eÞdy ð2:8Þ

¼ eeBðxÞ
Z
RN

e	~ww
2=2e

ð2ptÞN=2
/eðxþ e~AAðxÞ þ KðxÞ~ww; t 	 eÞd~ww; ð2:9Þ
which should be applied recursively exactly n times, until we arrive at the integral with the pre-defined
function /eðy; 0Þ � F ðyÞ in the right-hand side.
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The evaluation of (2.9) is based on the Monte-Carlo quadrature formula
Z
RN

f ð~wwÞ e
	~ww2=2Dffiffiffiffiffiffiffiffiffi
2pD

p d~ww ¼ Eff ðD~wwÞg; ð2:10Þ
where E denotes the mathematical expectation computed over the random vector D~ww 2 RN normally dis-

tributed with the dispersion D. Then, applying (2.10) to (2.9) we express /eðx; tÞ as the mathematical ex-
pectation
/eðx; tÞ ¼ E /e x
	n

þ e~AAðxÞ þ KðxÞD~ww; t 	 e
�
eeBðxÞ

o
; ð2:11Þ
with the averaging over the random vectors D~ww 2 RN normally distributed with the standard deviation

D ¼ e. Recursively applying this formula n times we arrive at the representation
/eðx; tÞ ¼ E F ðnnÞee½Bðn0ÞþBðn1Þþ���þBðnn	1Þ�

 �

; ne ¼ t; ð2:12Þ
where the mathematical expectation is computed over the n-legged discrete trajectories
x � n0 ! n1 ! � � � ! nn; nkþ1 ¼ nk þ e~AAðnnÞ þ KðnnÞD~wwkþ1; ð2:13Þ

determined by the independent random vectors D~ww1;D~ww2; . . . ;D~wwn, distributed according to the normal law

with the standard deviation D ¼ e. Finally, passing in (2.12) to the limit e ! 0 we obtain the well-known
Feynman–Kac formula (Dynkin, 1965; Freidlin, 1985)
/ðx; tÞ ¼ E F ðnx
t Þe

R t

0
Bðnxs Þ ds

� �
; ð2:14Þ
where the averaging is extended over the trajectories of the continuous random motion nx
t governed by Ito�s

stochastic equation
dnx
t ¼ ~AAðnx

t Þdt þ Kðnx
t Þd~wwt; nx

0 ¼ x; ð2:15Þ
with ~wwt denoting the standard N -dimensional Brownian motion (Wiener process).
It should be emphasized that the Feynman–Kac formula (2.14) that provides the solution of the Cauchy

problem (2.1) in the entire space RN is so versatile that it can be used in several different ways to derive

probabilistic solutions of problems like (2.1) formulated in a domain G with conditions imposed on its
boundary oG. Thus, the Dirichlet problem on the domain G � RN consisting of the equation and the initial

condition from (2.1), and the boundary condition
/ðx; tÞjoG ¼ 0; ð2:16Þ
can be treated as a problem (2.1) in the entire space RN with the coefficient BðxÞ extended outside of G as

BðxÞ ¼ 	1; x 62 G; ð2:17Þ
and with the coefficients KkkðxÞ, ~AAðxÞ extended outside G as arbitrary bounded functions. Then, applying
(2.14) and taking into account (2.17) we can readily show that the solution of the problem (2.1) and (2.16)

is given by the mathematical expectation
/ðx; tÞ ¼ E vðs
�

	 tÞF ðnx
t Þe

R t

0
Bðnxs Þds

�
; vðs 	 tÞ ¼ 1; if t < s;

0; if tP s;

�
ð2:18Þ
where s is the exit time, defined as the instant when the trajectory nx
t touches the boundary oG for the first

time.
Another approach to the probabilistic solution of the Dirichlet problem (2.1) and (2.16) is to extend the

coefficients and the initial data of the problem (2.1) outside of G by the formulas



B.V. Budaev, D.B. Bogy / International Journal of Solids and Structures 40 (2003) 6285–6306 6289
KkkðxÞ ¼ ~AAðxÞ ¼ F ðxÞ ¼ 0; BðxÞ ¼ 	1 for x 62 G: ð2:19Þ
Then, applying (2.14) and taking into account (2.19) we again arrive at (2.18).

Finally, to demonstrate the versatility of the random walks approach we outline one more method

leading to explicit probabilistic solutions of the Dirichlet problem (2.1) and (2.16) in a form distinctively

different from (2.18).

Let us restrict ourselves, for simplicity, to the heat-conduction problem
o/
ot

¼ 1
2
r2/ þ B/; /ðx; 0Þ ¼ F ðxÞ; /ðx; tÞjx2oG ¼ 0; B < 0; ð2:20Þ
which is a particular but representative case of (2.1) and (2.16), and seek its solution in the product form
/ðx; tÞ ¼ gðxÞwðx; tÞ; ð2:21Þ
where wðx; tÞ is a new unknown function and gðxÞ is an auxiliary smooth function on G satisfying the
conditions
gðxÞ ¼ 0; 0 < k~nnðxÞ � ~rrgðxÞk < const for x 2 oG; ð2:22Þ

gðxÞ > 0; r2gðxÞ < 0 for x 2 G; ð2:23Þ
where~nnðxÞ is the unit vector normal to oG at the point x and oriented inward to G. Such a function always
exists and can usually be defined by simple elementary formulas, utilizing specifics of the domain G. For
example, if G is the ball kxk < 1, then gðxÞ can be defined as gðxÞ ¼ 1	 kxk2. In general, gðxÞ can always be
defined as a solution of the Dirichlet problem r2g ¼ 	1, gjoG ¼ 0.
Substitution of (2.21) into (2.20) results in the problem for w
ow
ot

¼ 1
2
r2w þ

~rrg
g

� ~rrw þ B
�

þr2g
2g

�
w; wðx; 0Þ ¼ F ðxÞ

gðxÞ ; ð2:24Þ
matching the structure (2.1), so that its solution is provided by the Feynman–Kac formula
wðx; tÞ ¼ E
F ðnx

t Þ
gðnx

t Þ
e

R t

0
eBBðnxs Þ ds� �

; eBBðnÞ ¼ BðnÞ þ r2gðnÞ
2gðnÞ < 0; ð2:25Þ
with averaging over the trajectories of the random motion nx
t governed by the equation
dnx
t ¼ d~wwt þ~AAdt; ~AA ¼ ~rrg=g; ð2:26Þ
driven by the standard Brownian motion ~wwt. Due to the inequalities (2.23), the drift ~AA from (2.26) is ori-
ented from the boundary oG inwards to G. So, the closer nx

t comes to oG the more deterministically nx
t is

pulled back into G. As a result the trajectory of nx
t stays inside G, softly bouncing from the unreachable

boundary oG. Since nx
t never leaves G, the expression (2.25) involves values of F ðxÞ only inside G where they

are defined by the problem (2.24). Therefore, wðx; tÞ is consistently defined by (2.25) anywhere inside G and
it has finite values on oG, which guarantees that the product (2.21) obeys all the conditions of the Cauchy
problem (2.24) with Dirichlet boundary conditions.
3. Bismut formulas

Since the Feynman–Kac formula (2.14) provides the solution /ðx; tÞ of the problem (2.1) at any point
x 2 RN , it also formally determines the spatial derivatives of /ðx; tÞ, as well. However, (2.14) does not
suggest a direct method for computing such derivatives, which severely restricts the use of probabilistic
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methods in applied problems, where it is often equally as important to compute the gradient of the un-

known function as the function itself. This chronic drawback of the original Feynman–Kac formulas has

been eliminated by the so-called Bismut formula (Bismut, 1984), originally published in 1984 and then

widely discussed (Driver, 1997; Elworthy, 1992; Elworthy and Li, 1994; Norris, 1993) in the 1990s. To gain
some insight into the nature of the Bismut-like formulas we derive here some such formulas representing

derivatives of the solution of the problem (2.1) with constant coefficients.

We first derive, for example, an expression for the second-order derivative
D2~vv1~vv2/ðx; tÞ ¼
o2/ðxþ k1~vv1 þ k2~vv2; tÞ

ok1ok2

�����
k1¼0; k2¼D

; ð3:1Þ
of the solution of (2.1) along the independent vectors~vv1 and~vv2.
If the coefficients of the problem (2.1) are constants, then the integral (2.9) representing its approximate

solution /eðx; tÞ through /eðx; t 	 eÞ degenerates to the form
/eðx; tÞ ¼
eeB

ð2peÞN=2

Z
RN
e	~ww2=2e/eðxþ e~AAþ K~ww; t 	 eÞd~ww; ð3:2Þ
which eventually leads, after n iterations, to the expression
/eðx; tÞ ¼
eneBffiffiffiffiffiffiffi
2pe

p� �nN Z
RnN
e	ð~ww2

1
þ���þ~ww2nÞ=2e/eðxþ nn; 0Þd~ww1 . . . d~wwn; ne ¼ t; ð3:3Þ
where
nn ¼ ne~AAþ Kð~ww1 þ~ww2 þ � � � þ~wwnÞ; ne ¼ t; ð3:4Þ

and
/eðxþ nn; 0Þ � F ðxþ nnÞ; ð3:5Þ

in which F ðxÞ is the initial-data function from (2.1). Therefore, combining (2.7) with (3.3)–(3.5) we conclude
that the derivative D2~vv1~vv2/ can be represented as the limit
D2~vv1~vv2/ðx; tÞ ¼ lime!0 D
2
~vv1~vv2

/eðx; tÞ; ð3:6Þ
of the approximation
D2~vv1~vv2/eðx; tÞ ¼
d2/eðxþ k1~vv1 þ k2~vv2; tÞ

dk;dk2

�����
k1¼0; k2¼0

; ð3:7Þ
where
/eðxþ k1~vv1 þ k2~vv2; tÞ ¼
eneBffiffiffiffiffiffiffi
2pe

p� �nN Z
RnN
e	ð~ww2

1
þ���þ~ww2nÞ=2eF ðynÞd~ww1; . . . ; d~wwn; ð3:8Þ
and
yn ¼ xþ k1~vv1 þ k2~vv2 þ K½~ww1 þ~ww2 þ � � � þ~wwn� þ ne~AA; ne ¼ t: ð3:9Þ

Let us select two independent indices i and j from the range 16 i; j6 n, and re-arrange the order of the

terms in (3.8) representing yn as
yn ¼ xþ t~AAþ K½~ww1 þ � � � þ ð~wwi þ k1K
	1~vv1Þ þ � � � þ ð~wwj þ k2K

	1~vv2Þ þ � � � þ~wwn�; ð3:10Þ
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where the indices i and j are not required to follow in the shown order i < j. Then, the integral (3.8) is
reduced by the substitutions
~wwi þ k1K
	1~vv1 ! ~wwi; ~wwj þ k2K

	1~vv2 ! ~wwj; ð3:11Þ

to the form
/eðxþ k1~vv1 þ k2~vv2; tÞ ¼
tBffiffiffiffiffiffiffi
2pe

p� �nN Z
RnN
e
	Ui;j

k1k2
ð~ww1;...;~wwnÞ=2eF ðznÞd~ww1; . . . ; d~wwn; ð3:12Þ
where
Ui;j
k1k2

ð~ww1; . . . ; ~wwnÞ ¼ ~ww21 þ � � � þ ð~wwi 	 k1K
	1~vv1Þ2 þ � � � þ ð~wwj 	 k2K

	1~vv2Þ2 þ � � � þ~ww2n ð3:13Þ

and the points
zn ¼ xþ t~AAþ K~ww1 þ K~ww2 þ � � � þ K~wwn; ð3:14Þ

do not depend on k1, k2. Then, straightforward differentiation of (3.12) by k1 and k2 yields
D2~vv1~vv2/eðx; tÞ ¼
n2etB

t2

Z
RnN

F ðznÞ K	1~vv1 �~wwi

	 �
K	1~vv2 �~wwj

	 � e	ð~ww2
1
þ���þ~ww2nÞ=2effiffiffiffiffiffiffi
2pe

p� �nN d~ww1; . . . ; d~wwn; ð3:15Þ
and evaluating the integrals with respect to ~wwk by the quadratures (2.10) we obtain the formula
D2~vv1~vv2/eðx; tÞ ¼
n2etB

t2
E F ðnnÞ K	1~vv1 � D~wwi

	 �
K	1~vv2 � D~wwj

	 �n o
; ð3:16Þ
which represents the second-order derivatives of /eðx; tÞ as a weighted average of the values of the function
F ðxÞ at the end-points
nn ¼ xþ t~AAþ KðD~ww1 þ D~ww2 þ � � � þ D~wwnÞ; ð3:17Þ

of the discrete Brownian trajectories determined by the independent random vectors D~ww1;D~ww2; . . . ;D~wwn,

distributed by the Gaussian law with the standard deviation D ¼ e � t=n.
Although the formulas (3.16) explicitly represent the derivatives of the approximate solution /e of the

problem (2.1), the presence of the factor n2 makes these formulas unsuitable for passing to the limit
t=n � e ! 0. However, since the representations (3.16) remain valid for any indices i and j from the range
16 i, j6 n, it is possible to combine these formulas into expressions that do admit passage to the limit
e ! 0. Thus, the arithmetic mean value of all the formulas (3.16) has the structure
D2~vv1~vv2/eðx; tÞ ¼
1

t2
E F ðnnÞetB

Xn

i;j¼1
ðK	1~vv1 � D~wwiÞðK	1~vv2 � D~wwjÞ

( )
; ð3:18Þ
which converges in the limit n ! 1 to the Bismut formula (Elworthy and Li, 1994)
D2~vv1~vv2/ðx; tÞ ¼ E F ðnx
t ÞetBD2~vv1~vv2ð½n

x
t �Þ

n o
; ð3:19Þ
where
D2~vv1~vv2ð½n
x
t �Þ ¼

1

t2

Z t

0

Z t

0

K	1~vv1 � d~wws1

	 �
K	1~vv2 � d~wws2

	 �
; ð3:20Þ
is a functional depending on the trajectory of the random motion
nx
t ¼ xþ t~AAþ~wwt; ð3:21Þ
driven by the standard Brownian motion ~wwt.
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It is instructive to observe that the formula (3.19) is not unique, but is a very particular representative of

a broad family of similar formulas that can be derived from the basic formulas (3.16) by different kinds of

averaging with respect to the indices i and j. For instance, any function ptðs1; s2Þ, integrable on the square
06 s1, s26 t generates the representation (3.19) with the functional
D2~vv1~vv2ð½n
x
t �Þ ¼

1

Pt

Z t

0

Z t

0

ptðs1; s2Þ K	1~vv1 � d~wws1

	 �
K	1~vv1 � d~wws2

	 �
; ð3:22Þ
where
Pt ¼
Z t

0

Z t

0

ptðs1; s2Þds1 ds2: ð3:23Þ
Indeed, to derive (3.19) and (3.22) it suffices to average formulas (3.16) with the weights
pni;j ¼
Z ti

ti	1
ds1

Z tj

tj	1
ptðs1; s2Þds2; ti ¼ ie; tj ¼ je; ð3:24Þ
and then to pass to the limit e ! 0.
It should also be mentioned that formulas (3.19) and (3.22) admit straightforward generalizations

providing probabilistic representations of any derivatives of the solution /ðx; tÞ of the problem (2.1). Thus,
the derivatives of the kth order along the k-tuple v ¼ f~vv1;~vv2; . . . ;~vvkg of independent vectors ~vvi, are repre-
sented by the mathematical expectations
Dk
vðx; tÞ ¼ E F ðnx

t ÞetBDk
vð½n

x
t �Þ


 �
; v ¼ f~vv1;~vv2; . . . ;~vvkg; ð3:25Þ
where the �differentiating� functionals Dk
vð½n

x
t �Þ are determined on the trajectories of the random motion nx

t

from (3.21) by the integrals
Dk
vð½n

x
t �Þ ¼

1

Pt

Z t

0

Z t

0

� � �
Z t

0

ptðs1; s2; . . . ; skÞ
Yk
i¼1

K	1~vvi � d~wwsi

	 �
; ð3:26Þ

Pt ¼
Z t

0

Z t

0

� � �
Z t

0

ptðs1; s2; . . . ; skÞds1ds2 � � � dsk; ð3:27Þ
involving an arbitrary density pðs1; s2; . . . ; skÞ integrable in the domain 0 < s1; s2; . . . ; sk < t.
In conclusion of this brief discussion of the Bismut formulas it must be emphasized that they admit

extensions (Bismut, 1984; Driver, 1997; Elworthy, 1992; Elworthy and Li, 1994; Norris, 1993) going far

beyond the elementary cases considered here, and they deliver, in particular, probabilistic expressions for

the derivatives of the solutions of the problem (2.1) with non-constant coefficients, which makes it possible
to apply the techniques outlined at the end of Section 2 and to obtain probabilistic expressions for the

derivatives of the solutions of the problem (2.1) in a finite domain with imposed boundary conditions.
4. Probabilistic formulas for elliptic equations

Here we consider a second-order elliptic equation
1

2

XN
i¼1

K2ii
o2u
ox2i

þ~AA � ~rruþ Buþ F ¼ 0; ð4:1Þ
with constant coefficients Kii, ~AA and B.
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It is clear that (4.1) can be obtained by the integration of the parabolic equation (2.1) by the time

variable from zero to infinity. From this it follows that if the integral
uðxÞ ¼
Z 1

0

/ðx; tÞdt; ð4:2Þ
where /ðx; tÞ is the solution of (2.1), converges then it represents the solution uðxÞ of the elliptic equation
(4.1). As for the convergence of (4.2) it may be guaranteed by different conditions on the coefficients of Eq.

(4.1). For example, the requirement B < 0 guarantees the convergence of (4.2) to the solution of (4.1) with
any bounded function F ðxÞ and with any vector coefficient ~AA. Also, the inequality ~AA 6¼ 0 and the esti-
mate jF ðxÞj < Oðe	jxjaÞ, a > 1, guarantee the convergence of (4.2) independently of the value of the coeffi-
cient B.
Assume that the integral (4.2) corresponding to Eq. (4.1) converges. Then, combining (4.2) with the

Feynman–Kac formula (2.14) we arrive at an explicit formula
uðxÞ ¼ E

Z 1

0

F ðnx
t ÞetB dt

� �
; nx

t ¼ xþ t~AAþ K~wwt; ð4:3Þ
which determines the solution of Eq. (4.1) as the mathematical expectation computed over trajectories of

the random motion nx
t determined by the standard Brownian motion ~wwt transformed by the diagonal matrix

K ¼ diag½K11; . . . ;KNN �. Similarly, combining (4.2) with the Bismut formulas (3.25)–(3.27) we conclude that
the derivatives of the solution of (4.1) are represented by the mathematical expectations
Dk
vuðxÞ ¼ E

Z 1

0

F ðnx
t ÞetBDk

vð½n
x
t �Þ

� �
; v ¼ f~vv1;~vv2; . . . ;~vvkg; ð4:4Þ
with the differentiating functionals Dk
v from (3.25).

To simplify further the expressions (4.3) and (4.4) we recall the Monte-Carlo quadrature
Z 1

0

F ðtÞdt ¼ 1
b
E F ðsÞebs

 �

; b > 0; ð4:5Þ
where the mathematical expectation is computed over the random numbers s distributed by the well-known
(Feller, 1967; Rozanov, 1995) exponential law
Pðs > tÞ ¼ e	bt: ð4:6Þ

Then, applying (4.5) to (4.3) and to (4.4) we represent the solution uðxÞ � D0uðxÞ of Eq. (4.1) and its de-
rivatives Dk

vuðxÞ as the mathematical expectations
Dk
vuðxÞ ¼

1

b
E F ðnx

sÞesðBþbÞDk
vð½n

x
s�Þ


 �
; nx

t ¼ xþ K~wwt; ð4:7Þ
with the differentiating functionals Dk
vð½n

x
t �Þ from (3.26), and with the averaging extended over the trajec-

tories of the random motion nx
t from (4.3) launched at the time t ¼ 0 from x and interrupted at the random

instant s with the exponential distribution (4.6).
Since formulas (4.7) remain valid for a broad class of functionalsDk

vð½n
x
t �Þ described by the integral (3.25),

it is not surprising that by restricting these functionals to narrower classes one may obtain simpler rep-

resentations than (4.7) for the derivatives of the solution of (4.1). For example, the first-order derivative of

uðxÞ along the vector~vv can be represented by the formula
D1~vvuðxÞ ¼ E

Z 1

0

F ðnx
t ÞetB K	1~vv � d~wwt

	 �� �
; ð4:8Þ



6294 B.V. Budaev, D.B. Bogy / International Journal of Solids and Structures 40 (2003) 6285–6306
whose only distinction from the Feynman–Kac formula (4.3) representing uðxÞ is that the integration by
the Lebesgue measure dt appearing in (4.3) is replaced in (4.8) by the integration with respect to the sto-
chastic measure K	1~vv � d~wwt

� �
. Indeed, to derive (4.8) we apply (4.2) and represent the derivative of uðxÞ as

the sum
D1~vvuðxÞ ¼ limDt!0

X1
k¼0

D1~vv/ðx; tkÞDt; tk ¼ kDt: ð4:9Þ
Then, we compute the derivatives D1~vv/ðx; tkÞ by the Bismut formulas
D1~vv/ðx; tkÞ ¼ E f ðnx
tk
ÞeBtk ðK

	1~vv � D~wwtk Þ
Dt

( )
; D~wwtk �

Z tkþ1

tk

K	1~vv � d~wwt; ð4:10Þ
which follow from (3.26) with the density ptk ðsÞ uniformly distributed on the interval tk 6 s < tkþ1 and
vanishing for any other s. Finally, substituting (4.10) into (4.9) and passing to the limit Dt ! 0 we arrive at
(4.8).

To get an indication of the practical efficiency of the obtained probabilistic solutions of the elliptic
equations (4.1) we consider a particular two-dimensional equation
1

2
ð2u00xx þ u00yyÞ þ ðu0x þ u0yÞ 	

1

2
uþ F ¼ 0; ð4:11Þ
where
F ðxÞ ¼ 7

2

�
þ 2xþ 2y 	 4x2 	 2y2

�
e	ðx2þy2Þ

p
; ð4:12Þ
which has the following exact solution and its derivatives
u ¼ e
	ðx2þy2Þ

p
; u0x ¼ 	2xu; u0y ¼ 	2yu; u00xy ¼ 4xyu: ð4:13Þ
Fig. 1 shows the results of the numerical simulation of the function uðx; yÞ from (4.13) considered as the
solution of (4.11). The first diagram of Fig. 1 shows the profile of uðx; yÞ along the horizontal axis y ¼ 0:2.
The continuous line shows the exact values of uðx; yÞ computed by (4.12), while the circles ��� mark uðx; yÞ
simulated by the probabilistic formula (4.7) with k ¼ 0. Similarly, continuous lines in the second diagram
show the first-order derivatives u0xðx; yÞ and u0yðx; yÞ computed by the analytic formulas from (4.13), while
the �.� and �M� mark, respectively, the values of u0xðx; yÞ and u0yðx; yÞ simulated by the formulas (4.7) with
k ¼ 1 and with the �differentiating� functionals
D1~vvð½nt�Þ ¼
1

t

Z t

0

~vv � d~wws �
~vv �~wwt

t
; where ~vv ¼~eex; or ~vv ¼~eey ; ð4:14Þ
defined by the integral (3.25), with the density ptðsÞ uniformly distributed on 0 < s < t. Finally, the second
derivative u00xyðx; yÞ of the solution of (4.11) is displayed on the third diagram, where the continuous line
corresponds to the exact values, and diamonds �}� correspond to this derivative simulated by the formula
(4.7) with the differentiating functional
D2~eex~eey ð½nt�Þ ¼
1

t2

Z t

0

Z t

0

ð~eex � d~wwsxÞð~eex � d~wwsy Þ �
ð~eex �~wwtÞð~eey �~wwtÞ

t2
; ð4:15Þ
The mathematical expectations were estimated by averaging over the total number of 6000 independent

random walks
ðx; yÞ ! ðx; yÞ þ~AAs þ
ffiffiffi
s

p
~wws

~AA ¼ ð1; 1Þ; ð4:16Þ
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Fig. 1. Simulations by the Feynman–Kac and Bismut formulas.
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where ~wws is a random vector normally distributed in R2, and s is a random number distributed by the
exponential law (4.6) with the parameter b ¼ 1=2. To reduce the variance of the probabilistic computations
we included in the averaging the path (4.16) driven by the Brownian motion ~wws, together with three

associated paths: two paths corresponding to the Brownian motions symmetrical to ~wws with respect to

the Cartesian axes, and one path driven by the Brownian motion symmetrical to ~wws with respect to the

center of coordinates.
To conclude this section it is instructive to discuss the Poisson equation
1

2
r2uþ F ¼ 0; ð4:17Þ
which may be treated as a particular case of (4.1) with ~AA ¼ 0, B ¼ 0 and with Kii ¼ 1 for all 16 i6N . The
difficulty of the probabilistic analysis of this problem comes from the observation (Busnello, 1999; Revuz

and Yor, 1991) that the Feynman–Kac formula (4.3) corresponding to Eq. (4.17) considered in the entire
space RN diverges. However, it is also known (Busnello, 1999) that if F 2 Lp \ Lq, with 16 p < 2 < q61,
then the Bismut formula
D~vvuðxÞ ¼ E

Z 1

0

F ðx
(

þ~wwtÞ
~vv �~wwt

t
dt

)
; ð4:18Þ
converges to the derivative of the solution uðxÞ of (4.17) along the vector ~vv. Therefore, applying the
quadrature (4.5) with some positive parameter b > 0 we can convert (4.18) to the convergent formula
D~vvuðxÞ ¼
1

b
E F ðx
(

þ~wwsÞebs~vv �~wws

s

)
; b > 0; ð4:19Þ
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where the averaging is extended over all Brownian motions ~wwt interrupted at the random time s distributed
by the exponential law (4.6) with the parameter b > 0. Similarly, for the second-order derivatives of uðxÞ we
obtain the representation
D2~vv1~vv2uðxÞ ¼
1

b
E F ðx
(

þ~wwsÞebs ð~vv1 �~wwsÞð~vv2 �~wwsÞ
s2

)
; b > 0; ð4:20Þ
where all of the notation retains its meaning from (4.19).

It should be emphasized that the Bismut formulas (4.19) and (4.20) representing derivatives of the so-

lution uðxÞ of the Poisson equation (4.17) converge even though the Feynman–Kac formula (4.3) for uðxÞ
diverges. This difference is due to the additional factors whose estimates
E
j~vv �~wwsj

s

( )
¼ O

1ffiffiffi
s

p
� �

; s ! 1 ð4:21Þ
guarantee at least slow convergence of (4.18) and, consequently, of (4.19) and (4.20), even when

EðjF ðnx
t ÞjÞ ¼ Oð1Þ, which is not sufficient for the convergence of (4.3) with B � 0. Such differences in the

convergence of the Bismut and Feynman–Kac formulas is characteristic for equations of the type (4.1) with
~AA ¼ 0 and B ¼ 0. But when B < 0, as in the case of (2.23), which arises in the analysis of Dirichlet boundary
value problems in a domain G, the convergence is guaranteed both for the Feynman–Kac and Bismut
formulas.

To illustrate the divergence and convergence properties of the probabilistic formulas (4.19) and (4.20) for

the Poisson equation we applied these formulas to Eq. (4.17) on the plane R2 with the function
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Formula (4.3) for the solution of the Poisson equation diverges, 
but similar formulas for the derivatives of this solution converge.

Fig. 2. Probabilistic solution of the Poisson equation.
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F ðx; yÞ ¼ 2ð1	 x2 	 y2Þ e
	ðx2þy2Þ

p
; ð4:22Þ
which implies that
u ¼ e
	ðx2þy2Þ

p
; u0x ¼ 	2xu; u0y ¼ 	2yu; u00xy ¼ 4xyu: ð4:23Þ
The results of the numerical simulation of the functions from (4.23) are presented on Fig. 2 in the same

format as used on Fig. 1. The mathematical expectations were estimated by averaging over 10,000 inde-

pendent random walks (4.16) with ~AA ¼ 0 and with the parameter b set to b ¼ 0:5. The first diagram, dis-
playing the function uðx; yÞ clearly shows divergence of the Feynman–Kac formula (4.3) corresponding to
the Poisson equation (4.17) and (4.22). At the same time, the second and the third diagrams of Fig. 2

demonstrate convergence of the formulas (4.19) and (4.20) representing first and second derivatives of

uðx; yÞ.
5. Probabilistic solution of a triangular system of equations

To make our approach to systems of partial differential equations more transparent we first consider a

triangular system
L1u1 þ cD2~vv1~vv2u2 þ F1 ¼ 0; ð5:1Þ

L2u2 þ F2 ¼ 0; ð5:2Þ

where c is a constant,~vv1 and~vv2 are independent constant vectors, Fk are smooth functions and
Lk ¼
1

2

XN
i¼1

K2k;ii
o2

ox2i
þ~AAk � ~rrþ Bk; k ¼ 1; 2; ð5:3Þ
are second-order differential operators with constant coefficients.

Eqs. (5.1) and (5.2) may certainly be solved by two subsequent applications of formulas of the type (4.7).
Indeed, we may first compute u2 by the formula (4.7) applied to Eq. (5.2). Then, applying (4.7) to Eq.
L1u2 þ F ¼ 0 with the already defined function F ¼ F1 þ cD2~vv1~vv2u2, we compute u1. It is clear that the
straightforward implementation of this iterative approach requires computation of u2 over the entire space,
which eliminates one of the main advantages of probabilistic solutions, that is, the possibility of computing

the unknown functions only at certain required points. However, we will see here that the use of proba-

bilistic formulas makes it possible to implement the described iterations in a direct one-step procedure

which efficiently solves triangular systems of equations of the type (5.1) and admits generalization to more

general systems of differential equations, such as the Lam�ee equations of the theory of elasticity discussed in
Section 6.

Assume for the moment that u2 is already known. Then (5.1) can be treated as an equation of the type
(4.1) with respect to the unknown function u1 and with the pre-defined term F ¼ F1 þ cD2~vv1~vv2u2. Therefore,
after introducing the diagonal matrices
Kk ¼ diag Kk;11;Kk;22; . . . ;Kk;NN½ �; k ¼ 1; 2; ð5:4Þ

and applying (4.7) we arrive at the identity
u1ðxÞ ¼
1

b
E F ðnx

s1
Þes1ðB1þbÞ

n
þ c D2~vv1~vv2u2ðn

x
s1
Þ

h i
es1ðB1þbÞ

o
; ð5:5Þ
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where the averaging is extended over the trajectories of the random motion
nx
t ¼ xþ t~AA1 þ K1~wwt; 06 t < s1; ð5:6Þ
launched at the moment t ¼ 0 from the point x, and interrupted at the random time s1 with the exponential
distribution (4.6).

Then, applying the Bismut formula (4.7) to (5.2) we represent the derivative Dvu2ðnx
s1
Þ by the formula
Dvu2ðnx
s1
Þ ¼ E F2ðnx

s2
Þeðs2	s1ÞðB2þbÞQ

n o
; ð5:7Þ
where
Q ¼ ½~vv1 � K1ð~wws2 	~wws1Þ�½~vv2 � K2ð~wws2 	~wws1Þ�
bK2;11K2;22ðs2 	 s1Þ2

; ð5:8Þ
and the mathematical expectation is computed over the trajectories of the Brownian motion
nx
t ¼ nx

s1
þ ðt 	 s1Þ~AAþ K2~wwt	s1 ; s16 t < s2; ð5:9Þ
passing at the instant t ¼ s1 through the point x1 ¼ nx
s1
, and interrupted at the random time s2 distributed by

the exponential law
Pðs2 	 s1 > tÞ ¼ e	bðs2	s1Þ: ð5:10Þ

Finally, combining formulas (5.5) and (5.7) we arrive at the expression
u1ðxÞ ¼ E F1ðnx
s1
Þes1ðB1þbÞ

n
þ F2ðnx

s2
ÞQes1ðB1þbÞþs2ðB2þbÞ

o
; ð5:11Þ
which directly represents the solution u1 of the system (5.1) and (5.2) by the mathematical expectation
computed over the two random numbers s1, and s2 distributed according to (4.6) and (5.10), and over the
trajectories of the random motion launched from the observation point x and controlled by the stochastic
equations (5.6) and (5.9). Similarly, for the derivatives Dk

vu1 of u1 along the k-tuples v ¼ f~vv1; . . . ;~vvkg we get
the expression
Dk
vu1ðxÞ ¼ E Dk

vð½n
x
s1
�Þ F1ðnx

s1
Þes1ðB1þbÞ

hn
þ F2ðnx

s2
ÞQes1ðB1þbÞþs2ðB2þbÞ

io
; ð5:12Þ
whose only difference with (5.11) is the presence of the differentiating functional Dk
vð½n

x
s1
�Þ defined by for-

mulas of the type (3.26) and (3.27), and depending on the trajectory of the random motion nx
t on the initial

time-interval 06 t < s1. As for the function u2 and its derivatives, they can be computed by the Feynman–
Kac–Bismut formulas (4.7) applied to Eq. (5.2).
6. Probabilistic solution of Lam�ee-like equations

Finally we consider a system of elliptic second-order differential equations
L1u1 þ cDeu2 þ F1 ¼ 0; De � D~ee1~ee2 ; ð6:1Þ

L2u2 þ cDeu1 þ F2 ¼ 0; ð6:2Þ

where~ee1,~ee2 and c are constants, F1ðxÞ and F2ðxÞ are bounded functions of x 2 RN ,
Lk ¼
1

2

XN
i¼1

K2k;ii
o2

ox2i
þ~AAk � ~rrþ Bk; k ¼ 1; 2; ð6:3Þ
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are scalar differential operators with constant coefficients. It is clear that the Lam�ee equations (Sokolnikoff,
1956) describing the plain-strain state of an elastic medium can be viewed as a two-dimensional case of (6.1)

and (6.2) characterized by the coefficients
K21;11 ¼ K22;22 ¼ k þ 2l; K21;22 ¼ K22;11 ¼ l; c ¼ k þ l;

~AA1 ¼ ~AA2 ¼ 0; B1 ¼ B2 ¼ 0;
ð6:4Þ
where k and l are the material constants of the elastic medium. Here we develop a probabilistic approach to
the system of equations (6.1) and (6.2).

To analyze this system by the iterative scheme applied above to a triangular system (5.1), we first in-

troduce diagonal matrices
K1 ¼ diag½K1;11;K1;22; . . . ;K1;NN �; K2 ¼ diag½K2;11;K2;22; . . . ;K2;NN � ð6:5Þ
generated by the coefficients of Eqs. (6.1) and (6.2) respectively. Then, treating (6.1) as an equation of the

type (4.1) with respect to u1, we derive from (4.7) the identity
u1ðxÞ ¼ E Q1F ðnx
s1
Þ

n
þ cQ1Deu2ðnx

s1
Þ
o
; Q1 ¼ eðB1þbÞs1=b; ð6:6Þ
where the mathematical expectation is computed over the trajectories of the random motion nx
t , which starts

at the moment t ¼ 0 from x, runs thereafter as
nx
t ¼ xþ t~AA1 þ K1~wwt; 06 t < s1; ð6:7Þ
where ~wwt is the standard N -dimensional Brownian motion, and stops at the random time s1 distributed by
the exponential law Pðs1 > tÞ ¼ e	bt with some positive parameter b > 0.
After that, we treat (6.2) as an equation with respect to u2 and applying (4.7), represent the derivative

Deu2ðnx
s1
Þ appearing in the right-hand side of (6.6) by the formula
Deu2ðnx
s1
Þ ¼ E qF2 nx

s2

	 �n
þ cqDeu1 nx

s2

	 �o
; ð6:8Þ
with the factor
q ¼ Deð½nx
t �ÞeðB2þbÞs2=b; s16 t < s2; ð6:9Þ
where Deð½nx
t �Þ is a functional (3.26) and (3.27), defined on trajectories of the random motion
nx
t ¼ nx

s1
þ ðt 	 s1Þ~AA2 þ K2~wwt	s1 ; s16 t < s2; ð6:10Þ
running on the time interval s16 t < s2, where s2 is a random number distributed by the law

Pðs2 	 s1 > tÞ ¼ e	bðs2	s2Þ with the same parameter b > 0 as in (6.6).
As a result, after the substitution of (6.8) into (6.6) we obtain the identity
u1ðxÞ ¼ E Q1F1ðnx
s1
Þ

n
þ cqQ1F2ðnx

s2
Þ þ c2qQ1Deu1ðnx

s2
Þ
o
; ð6:11Þ
whose right-hand side contains the derivative Deu1ðnx
s2
Þ, which can be represented by the Bismut formula

(4.7) applied to Eq. (6.1), etc.

It is clear that the described iterations can be started from Eq. (6.2) as well as from (6.1), and that these

iterations can be continued indefinitely resulting in the series
unðxÞ ¼ E
X1
k¼1

QkFmnk
ðnx;n

sk
Þ

( )
; n ¼ 1; 2; ð6:12Þ
whose components have the meaning described below.
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The indices mnk take one of the two possible values m ¼ 1 or m ¼ 2 determined by the rule
mnk ¼
n; if k ¼ 1; 3; 5; . . . ;
�nn; if k ¼ 2; 4; 6; . . . ;

�
ð6:13Þ
where
�nn ¼ 1; if n ¼ 2;
2; if n ¼ 1:

�
ð6:14Þ
The random numbers sk form a monotonic sequence
0 � s0 < s1 < s2 � � � < sk	1 < sk < � � � ; ð6:15Þ
known as the Poissonian stream (Feller, 1967; Rozanov, 1995) characterized by the exponential distribu-

tions
Pðsk 	 sk	1 > tÞ ¼ e	bt: ð6:16Þ
The continuous random motions nx;n
t are launched at the time t ¼ 0 from the observation point x and are

controlled thereafter by the stochastic equation
nx;n
0 ¼ x; dnx;n

t ¼ Knd~wwt; if s2j 6 t < s2jþ1;
K�nnd~wwt; if s2j	16 t < s2j:

�
ð6:17Þ
The factors Qk are defined by the recursive formulas
Qn
1 ¼ eðBnþbÞs1=b; ð6:18Þ

Qk ¼ Qk	1Deð½nx;n
t �ÞeðBmþbÞðsm	sm	1Þ=b; m ¼ mnk ; sk	16 t < sk; ð6:19Þ
involving the values of the functional Deð½nx;n
t �Þ defined on the trajectories of the random motion nx;n

t be-

tween consequent moments sk of the Poissonian stream (6.15).
It is worth mentioning that formulas (6.12) for the solutions of Eqs. (6.1) and (6.2) can be readily

modified to represent also the derivatives of these solutions. Thus, for the derivatives Dm
v un of un along the

m-tuples v ¼ f~vv1; . . . ;~vvmg we get the expression
Dm
v u1 ¼ nðxÞ ¼ E Dm

v ð½n
x;1
s1
�Þ
X1
k¼1

QkFmn
k
ðnx;n

sk
Þ

( )
; n ¼ 1; 2; ð6:20Þ
whose only difference with (6.12) is the presence of the differentiating functional Dm
v ð½n

x
s1
�Þ defined by the

formulas of the type (3.26) and (3.27), and depending on the trajectory of the random motion nx;1
t on the

initial time-interval 06 t < s1.
To discuss the convergence of the series (6.12) it is convenient to look at it from another point of view.

LetL	1
k be the operators inverse toLk from (6.3), existing due to the ellipticity ofLk. Then, Eqs. (6.1) and

(6.2) can be converted to the form
u1 þ cL	1
1 Deu2 þL	1

1 F1 ¼ 0;
u2 þ cL	1

2 Deu1 þL	1
2 F2 ¼ 0;

ð6:21Þ
which can be split, after one iteration, to a system of two uncoupled equations
u1 	 T1u1 ¼ f1; u2 	 T2u2 ¼ f2; ð6:22Þ
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with the operators
T1 ¼ c2L	1
1 DeL

	1
2 De; T2 ¼ c2L	1

2 DeL
	1
1 De; ð6:23Þ
and with the right-hand sides
f1 ¼ cL	1
1 DeL

	1
2 F2 	L	1

1 F1; f2 ¼ cL	1
2 DeL

	1
1 F1 	L	1

2 F2: ð6:24Þ

Eq. (6.22) can be formally resolved by the Neumann series
un ¼ fn þ Tnfn þ T 2n fn þ T 3n fn þ � � � ; n ¼ 1; 2; ð6:25Þ

and comparing the procedures that led to (6.25) and to (6.12), one can conclude that the probabilistic

formulas (6.12) are just special implementations of (6.25) in a similar way that the probabilistic solution

(5.11) of the triangular system (5.1) is just a special implementation of the solution of (5.1) obtained by the

obvious two-step iterative process outlined in the beginning of Section 5.

From the above it follows that the probabilistic series (6.12) converges to the solution of (6.1) and (6.2)

when and only when the Neumann series (6.25) converge. Therefore, to justify the probabilistic approach to

the plain-strain problems of the theory of elasticity it suffices to prove convergence of the Neumann series
(6.25) corresponding to the two-dimensional Lam�ee equations which have the structure (6.1)–(6.3) with the
coefficients from (6.4).

Let ûunðw1;w2Þ, where n ¼ 1; 2, be the Fourier transforms
ûunðw1;w2Þ ¼
1

2p

Z
R2
unðx1; x2Þeiðx1w1þx2w2Þ dx1 dx2; ð6:26Þ
of the unknown functions of the Lam�ee equations (6.1)–(6.4). Then, Eq. (6.22) associated with (6.1)–(6.4) are
converted by the Fourier transform to the algebraic equations
1
	

	 bTT �ûun ¼ f̂fn; n ¼ 1; 2; ð6:27Þ
where f̂fn are the Fourier transforms of the right-hand side functions fn from (6.24), and
bTT � bTT ðw1;w2Þ ¼ ðk þ lÞ2w21w22
ðk þ 2lÞw21 þ lw22½ � ðk þ 2lÞw22 þ lw21½ � ; ð6:28Þ
as follows from the definitions (6.24) of the operators Tn involved in (6.22). Finally, we observe that the
obvious inequalities
ðk þ 2lÞw21 þ lw22P ðk þ 2lÞw21; ðk þ 2lÞw22 þ lw21P ðk þ 2lÞw22; ð6:29Þ

generate the estimate
jbTT j6 ðk þ lÞ2

ðk þ 2lÞ2
6 1; ð6:30Þ
which guarantees the convergence of the Neumann series for the algebraic equation (6.27) and, conse-

quently, of the Neumann series (6.25), as well as of the probabilistic series (6.12), corresponding to the

Lam�ee equations (6.1)–(6.4).
It is rather clear that the above presented proof of convergence of the series (6.12) and (6.25) corre-

sponding to the two-dimensional Lam�ee equations can be extended to general elliptic systems of the type
(6.1) and (6.2), but here we do not go into the details of such an analysis.

To get an indication of the practicability of the probabilistic approach to systems of differential equa-
tions we considered the following system of two-dimensional equations:
1

2

	
u00xx þ 1

3
u00yy

�
	 uþ 1

3
v00xy ¼ f1;

1

2

	
1
3
v00xx þ v00yy

�
	 vþ 1

3
u00xy ¼ f2; ð6:31Þ
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with the factors 1
2
introduced to make (6.31) match the structure in (6.1)–(6.4) with the operators
L1 ¼
1

2

o2

ox2

�
þ 1
3

o2

oy2

�
; L2 ¼

1

2

1

3

o2

ox2

�
þ o2

oy2

�
; cDe ¼

1

3

o2

oxoy
; ð6:32Þ
that arise in the analysis of the plain-strain state of the elastic material with Poisson�s ratio r ¼ 0:25, typical
for steels. The right-hand sides f1 and f2 in (6.31) are defined by the formulas
f1ðx; yÞ ¼ L1v x; y; 1
2
; 1

� �
	 v x; y; 1

2
; 1

� �
þ cDev x; y; 1; 1

4

� �
;

f2ðx; yÞ ¼ L2v x; y; 1; 1
4

� �
	 v x; y; 1; 1

4

� �
þ cDev x; y; 1

2
; 1

� �
;

ð6:33Þ
where
vðx; y;D; pÞ ¼ pe	ðx2þy2Þ=2D

2pD
; ð6:34Þ
is the scaled Gaussian function.

It is clear that the exact solution of Eqs. (6.31) and (6.33) is
uðxÞ ¼ v x; y; 1
2
; 1

� �
; vðxÞ ¼ v x; y; 1; 1

4

� �
: ð6:35Þ
On the other hand, these equations can be considered as a particular case of the system of equations (6.1)

and (6.2) with the parameters
K1;11 ¼ 1; K1;22 ¼
1ffiffiffi
3

p ; B1 ¼ 	1; c ¼ 1
3
;

K2;11 ¼
1ffiffiffi
3

p ; K2;22 ¼ 1; B2 ¼ 	1; ~ee1 ¼~eex; ~ee2 ¼~eey ;
ð6:36Þ
where~eex and~eey are the Cartesian coordinate vectors.
The first diagram of Fig. 3 shows the solution uðx; yÞ along the line y ¼ 0:2. The second diagram shows

its first derivatives and the third diagram shows the mixed second-order derivative u00xyðx; yÞ. The continuous
lines in all diagrams display the results computed by the analytic formulas (6.35), while the circles ��� and
diamonds �}� mark u and u00xy , respectively, simulated by the probabilistic formulas (6.12)–(6.20). Similarly,
in the second diagram the triangles �.� and �M� mark the simulated values of u0x and u0y , respectively. All
mathematical expectations were approximated by averaging over 10,000 random walks described by Eq.
(6.17) and switching modes at the random moments s1; s2; . . . ; sk, forming the Poissonian stream (6.15) and
(6.16) with the parameter b ¼ 1

2
. The numerical results were obtained by retaining five terms in the series

(6.12), although the contribution of the 5th term was already practically negligible. To reduce the variance

of the probabilistic computations we included in the averaging every random path nx
t driven by the

Brownian motion wt together with the associated paths driven by the Brownian motions symmetrical to wt

with respect to each of the coordinate axes and with respect to the center of the coordinates.

As an another example we consider the system of equations
1

2
ðu00xx þ 1

3
u00yyÞ þ

1

3
v00xy ¼ f1;

1

2
ð1
3
v00xx þ v00yyÞ þ

1

3
u00xy ¼ f2; ð6:37Þ
with the right-hand sides
f1ðx; yÞ ¼ L1v x; y; 1
2
; 1

� �
þ cDev x; y; 1; 1

4

� �
;

f2ðx; yÞ ¼ L2v x; y; 1; 1
4

� �
þ cDev x; y; 1

2
; 1

� �
;

ð6:38Þ
defined by the Gaussian function vðx; y;D; pÞ from (6.32) modified by the operators L1, L2 and cDe in-
troduced by (6.32). It is clear that (6.37) are the Lam�ee equations of the plain-strain state of a medium with
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Fig. 3. Probabilistic solution of the system of equations.
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the Poisson ratio r ¼ 0:25, and that Eq. (6.37) with the right-hand sides (6.38) have the same exact solution
(6.35) as in the previous example.

The difference between Eqs. (6.38) and (6.31) is the absence in (6.37) of the damping terms �	u� and �	v�
whose presence guarantees convergence of the expression (6.12) for any bounded functions f1ðxÞ and f2ðxÞ.
From the discussion in the end of Section 4 it follows that the Feynman–Kac formula (6.6) representing u1
as the solution of (6.1) with pre-defined f1 and u2 diverge, from which it follows that the expression (6.12)
based on (6.6) also diverges. However, from that discussion it also follows that the Bismut formulas (6.8)
and (6.20) still converge to the derivatives of the solutions u and v of the system (6.37). The last observation
means that if u and v are Cartesian displacements of the elastic medium in the plain-strain state, then the
corresponding components
exx ¼
ou
ox

; eyy ¼
ov
oy

; exy ¼
1

2

ou
oy

�
þ ov
ox

�
; ð6:39Þ
of the strain tensor can be computed by the probabilistic simulation.

The results of the probabilistic simulation of the solution of Eq. (6.37) are shown in Fig. 4, where the first
diagram displays the first-order derivatives u0x and u0y , while the second diagram shows the second-order
derivative u00xy . All of the computations were made by the same algorithms as used in the previous example.
Here we have applied the random walks approach to systems of partial differential equations with

constant coefficients considered in the entire N -dimensional space. Since the results look promising the
question arises about possibilities of extending the approach to systems of equations with variable coeffi-

cients and to boundary value problems for systems of equations considered in a bounded domain. In this

regards it is appropriate to observe that our approach is based on the ability to obtain probabilistic rep-

resentations of the derivatives of the solution of scalar differential equations. At the end of Section 3 it was
mentioned that the Bismut formulas provide such representations and are extendable to problems with



–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
–0.4

–0.2

0

0.2

0.4

1s
t  

D
er

iv
at

iv
es

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

–0.2

–0.1

0

0.1

0.2

2n
d 

D
er

iv
at

iv
e

x–coordinate  (y=0.2)

Fig. 4. Probabilistic solution of the system of Lam�ee equations.
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variable coefficients. This indicates that our approach can be extended to systems of equations with variable

coefficients and, consequently, as discussed in Section 4, to boundary value problems.
7. Conclusion

The results presented here suggest that the synthesis of the Feynman–Kac and Bismut formulas provides

a promising probabilistic approach to partial differential equations of the theory of elasticity. The ad-

vantages of this approach include, but are not limited to, versatility, the possibility of computing the

functions of interest at isolated points without computing them on massive meshes, and the opportunity of

having simple scalable implementations with practically unlimited capability for parallel processing.

Here we explored the basic ideas of the random walk approach to problems of elasticity and considered

only elementary examples that illustrate its applications to the analysis of the system of Lam�ee equations in
the entire homogeneous isotropic elastic medium. In future papers we plan to extend the approach to

problems of elastostatics in bounded, possibly inhomogeneous and anisotropic media, and also to problems

of propagation and diffraction of elastic waves.
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